Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain
Received date: 09 Jan 2014
Accepted date: 11 Jan 2014
Published date: 01 Feb 2014
Copyright
Mounting evidence points to critical roles for DNA modifications, including 5-methylcytosine (5mC) and its oxidized forms, in the development, plasticity and disorders of the mammalian nervous system. The novel DNA base 5-hydroxymethylcytosine (5hmC) is known to be capable of initiating passive or active DNA demethylation, but whether and how extensively 5hmC functions in shaping the post-mitotic neuronal DNA methylome is unclear. Here we report the genome-wide distribution of 5hmC in dentate granule neurons from adult mouse hippocampus in vivo. 5hmC in the neuronal genome is highly enriched in gene bodies, especially in exons, and correlates with gene expression. Direct genome-wide comparison of 5hmC distribution between embryonic stem cells and neurons reveals extensive differences, reflecting the functional disparity between these two cell types. Importantly, integrative analysis of 5hmC, overall DNA methylation and gene expression profiles of dentate granule neurons in vivo reveals the genome-wide antagonism between these two states of cytosine modifications, supporting a role for 5hmC in shaping the neuronal DNA methylome by promoting active DNA demethylation.
Key words: dentate granule neuron; active DNA demethylation; TET; methylome
Junjie U. GUO , Keith E. SZULWACH , Yijing SU , Yujing LI , Bing YAO , Zihui XU , Joo Heon SHIN , Bing XIE , Yuan GAO , Guo-li MING , Peng JIN , Hongjun SONG . Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain[J]. Frontiers in Biology, 2014 , 9(1) : 66 -74 . DOI: 10.1007/s11515-014-1295-1
1 |
BhutaniN, BurnsD M, BlauH M (2011). DNA demethylation dynamics. Cell, 146(6): 866–872
|
2 |
BirdA (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21
|
3 |
BoothM J, BrancoM R, FiczG, OxleyD, KruegerF, ReikW, BalasubramanianS (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science, 336(6083): 934–937
|
4 |
BrancoM R, FiczG, ReikW (2012). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet, 13(1): 7–13
|
5 |
DawlatyM M, BreilingA, LeT, RaddatzG, BarrasaM I, ChengA W, GaoQ, PowellB E, LiZ, XuM, FaullK F, LykoF, JaenischR (2013). Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell, 24(3): 310–323
|
6 |
FengJ, ChangH, LiE, FanG (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res, 79(6): 734–746
|
7 |
FengJ, ZhouY, CampbellS L, LeT, LiE, SweattJ D, SilvaA J, FanG (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 13(4): 423–430
|
8 |
FrauerC, HoffmannT, BultmannS, CasaV, CardosoM C, AntesI, LeonhardtH (2011). Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS ONE, 6(6): e21306
|
9 |
GlobischD, MünzelM, MüllerM, MichalakisS, WagnerM, KochS, BrücklT, BielM, CarellT (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE, 5(12): e15367
|
10 |
GollM G, BestorT H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74(1): 481–514
|
11 |
GotoK, NumataM, KomuraJ I, OnoT, BestorT H, KondoH (1994). Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation, 56(1–2): 39–44
|
12 |
GuT P, GuoF, YangH, WuH P, XuG F, LiuW, XieZ G, ShiL, HeX, JinS G, IqbalK, ShiY G, DengZ, SzabóP E, PfeiferG P, LiJ, XuG L (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 477(7366): 606–610
|
13 |
GuoJ U, MaD K, MoH, BallM P, JangM H, BonaguidiM A, BalazerJ A, EavesH L, XieB, FordE, ZhangK, MingG L, GaoY, SongH (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci, 14(10): 1345–1351
|
14 |
GuoJ U, SuY, ShinJ H, ShinJ, LiH, XieB, ZhongC, HuS, LeT, FanG, ZhuH, ChangQ, GaoY, MingG L, SongH (2013). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci, doi: 10.1038/nn.3607
|
15 |
GuoJ U, SuY, ZhongC, MingG L, SongH (2011b). Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle, 10(16): 2662–2668
|
16 |
GuoJ U, SuY, ZhongC, MingG L, SongH (2011c). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3): 423–434
|
54 |
HahnM A, QiuR, WuX, LiA X, ZhangH, WangJ, JuiJ, JinS G, JiangY, PfeiferG P, LuQ (2013). Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep, 3: 291–300
|
17 |
HeY F, LiB Z, LiZ, LiuP, WangY, TangQ, DingJ, JiaY, ChenZ, LiL, SunY, LiX, DaiQ, SongC X, ZhangK, HeC, XuG L (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 333(6047): 1303–1307
|
18 |
InoueA, ZhangY (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 334(6053): 194
|
19 |
ItoS, D’AlessioA C, TaranovaO V, HongK, SowersL C, ZhangY (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466(7310): 1129–1133
|
20 |
ItoS, ShenL, DaiQ, WuS C, CollinsL B, SwenbergJ A, HeC, ZhangY (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047): 1300–1303
|
21 |
KaasG A, ZhongC, EasonD E, RossD L, VachhaniR V, MingG L, KingJ R, SongH, SweattJ D (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79(6): 1086–1093
|
22 |
KimT K, HembergM, GrayJ M, CostaA M, BearD M, WuJ, HarminD A, LaptewiczM, Barbara-HaleyK, KuerstenS, Markenscoff-PapadimitriouE, KuhlD, BitoH, WorleyP F, KreimanG, GreenbergM E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295): 182–187
|
23 |
KohliR M, ZhangY (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502(7472): 472–479
|
24 |
KriaucionisS, HeintzN (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929): 929–930
|
25 |
LienertF, WirbelauerC, SomI, DeanA, MohnF, SchóbelerD (2011). Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet, 43(11): 1091–1097
|
26 |
ListerR, PelizzolaM, DowenR H, HawkinsR D, HonG, Tonti-FilippiniJ, NeryJ R, LeeL, YeZ, NgoQ M, EdsallL, Antosiewicz-BourgetJ, StewartR, RuottiV, MillarA H, ThomsonJ A, RenB, EckerJ R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322
|
27 |
MaD K, GuoJ U, MingG L, SongH (2009a). DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle, 8(10): 1526–1531
|
28 |
MaD K, PonnusamyK, SongM R, MingG L, SongH (2009b). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain, 2(1): 16
|
29 |
MeissnerA, MikkelsenT S, GuH, WernigM, HannaJ, SivachenkoA, ZhangX, BernsteinB E, NusbaumC, JaffeD B, GnirkeA, JaenischR, LanderE S (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454(7205): 766–770
|
30 |
MellénM, AyataP, DewellS, KriaucionisS, HeintzN (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151(7): 1417–1430
|
31 |
MillerC A, SweattJ D (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6): 857–869
|
32 |
PastorW A, AravindL, RaoA (2013). TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol, 14(6): 341–356
|
33 |
PastorW A, PapeU J, HuangY, HendersonH R, ListerR, KoM, McLoughlinE M, BrudnoY, MahapatraS, KapranovP, TahilianiM, DaleyG Q, LiuX S, EckerJ R, MilosP M, AgarwalS, RaoA (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 473(7347): 394–397
|
34 |
RudenkoA, DawlatyM M, SeoJ, ChengA W, MengJ, LeT, FaullK F, JaenischR, TsaiL H (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79(6): 1109–1122
|
35 |
ShuklaS, KavakE, GregoryM, ImashimizuM, ShutinoskiB, KashlevM, OberdoerfferP, SandbergR, OberdoerfferS (2011). CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 479(7371): 74–79
|
36 |
SongC X, SzulwachK E, DaiQ, FuY, MaoS Q, LinL, StreetC, LiY, PoidevinM, WuH, GaoJ, LiuP, LiL, XuG L, JinP, HeC (2013). Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell, 153(3): 678–691
|
37 |
SongC X, SzulwachK E, FuY, DaiQ, YiC, LiX, LiY, ChenC H, ZhangW, JianX, WangJ, ZhangL, LooneyT J, ZhangB, GodleyL A, HicksL M, LahnB T, JinP, HeC (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 29(1): 68–72
|
38 |
SpruijtC G, GnerlichF, SmitsA H, PfaffenederT, JansenP W, BauerC, MünzelM, WagnerM, MüllerM, KhanF, EberlH C, MensingaA, BrinkmanA B, LephikovK, MüllerU, WalterJ, BoelensR, van IngenH, LeonhardtH, CarellT, VermeulenM (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell, 152(5): 1146–1159
|
39 |
StadlerM B, MurrR, BurgerL, IvanekR, LienertF, SchölerA, van NimwegenE, WirbelauerC, OakeleyE J, GaidatzisD, TiwariV K, SchübelerD (2011a). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495
|
40 |
StadlerM B, MurrR, BurgerL, IvanekR, LienertF, SchölerA, van NimwegenE, WirbelauerC, OakeleyE J, GaidatzisD, TiwariV K, SchübelerD (2011b). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480(7378): 490–495
|
41 |
SzulwachK E, LiX, LiY, SongC X, HanJ W, KimS, NamburiS, HermetzK, KimJ J, RuddM K, YoonY S, RenB, HeC, JinP (2011a). Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet, 7(6): e1002154
|
42 |
SzulwachK E, LiX, LiY, SongC X, WuH, DaiQ, IrierH, UpadhyayA K, GearingM, LeveyA I, VasanthakumarA, GodleyL A, ChangQ, ChengX, HeC, JinP (2011b). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14(12): 1607–1616
|
43 |
TahilianiM, KohK P, ShenY, PastorW A, BandukwalaH, BrudnoY, AgarwalS, IyerL M, LiuD R, AravindL, RaoA (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935
|
44 |
ValinluckV, SowersL C (2007). Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res, 67(3): 946–950
|
45 |
WangF, YangY, LinX, WangJ Q, WuY S, XieW, WangD, ZhuS, LiaoY Q, SunQ, YangY G, LuoH R, GuoC, HanC, TangT S (2013). Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet, 22(18): 3641–3653
|
46 |
WuS C, ZhangY (2010). Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 11(9): 607–620
|
47 |
XuY, WuF, TanL, KongL, XiongL, DengJ, BarberaA J, ZhengL, ZhangH, HuangS, MinJ, NicholsonT, ChenT, XuG, ShiY, ZhangK, ShiY G (2011). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell, 42(4): 451–464
|
48 |
YamaguchiS, ShenL, LiuY, SendlerD, ZhangY (2013). Role of Tet1 in erasure of genomic imprinting. Nature, 504(7480): 460–464
|
49 |
YaoB, LinL, StreetR C, ZalewskiZ A, GallowayJ N, WuH, NelsonD L, JinP (2013). Genome-wide alteration of 5-hydroxymethylcytosine in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet, (Oct): 20 (Epub ahead of print)
|
50 |
YuM, HonG C, SzulwachK E, SongC X, ZhangL, KimA, LiX, DaiQ, ShenY, ParkB, MinJ H, JinP, RenB, HeC (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149(6): 1368–1380
|
51 |
ZhangH, ZhangX, ClarkE, MulcaheyM, HuangS, ShiY G (2010). TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res, 20(12): 1390–1393
|
52 |
ZhangR R, CuiQ Y, MuraiK, LimY C, SmithZ D, JinS, YeP, RosaL, LeeY K, WuH P, LiuW, XuZ M, YangL, DingY Q, TangF, MeissnerA, DingC, ShiY, XuG L (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13(2): 237–245
|
53 |
ZhuJ K (2009). Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet, 43(1): 143–166
|
/
〈 | 〉 |