RESEARCH ARTICLE

A computational approach to explore the functional missense mutations in the spindle check point protein Mad1

  • Merlin LOPUS 1 ,
  • Rao SETHUMADHAVAN 1 ,
  • P. CHANDRASEKARAN 1 ,
  • K. SREEVISHNUPRIYA 1 ,
  • A.W. VARSHA 2 ,
  • V. SHANTHI 2 ,
  • K. RAMANATHAN 1 ,
  • R. RAJASEKARAN , 1
Expand
  • 1. Bioinformatics Division, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
  • 2. Industrial Biotechnology Division, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

Received date: 18 May 2013

Accepted date: 20 Aug 2013

Published date: 01 Dec 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this work, the most detrimental missense mutations of Mad1 protein that cause various types of cancer were identified computationally and the substrate binding efficiencies of those missense mutations were analyzed. Out of 13 missense mutations, I Mutant 2.0, SIFT and PolyPhen programs identified 3 variants that were less stable, deleterious and damaging respectively. Subsequently, modeling of these 3 variants was performed to understand the change in their conformations with respect to the native Mad1 by computing their root mean squared deviation (RMSD). Furthermore, the native protein and the 3 mutants were docked with the binding partner Mad2 to explain the substrate binding efficiencies of those detrimental missense mutations. The docking studies identified that all the 3 mutants caused lower binding affinity for Mad2 than the native protein. Finally, normal mode analysis determined that the loss of binding affinity of these 3 mutants was caused by altered flexibility in the amino acids that bind to Mad2 compared with the native protein. Thus, the present study showed that majority of the substrate binding amino acids in those 3 mutants displayed loss of flexibility, which could be the theoretical explanation of decreased binding affinity between the mutant Mad1 and Mad2.

Cite this article

Merlin LOPUS , Rao SETHUMADHAVAN , P. CHANDRASEKARAN , K. SREEVISHNUPRIYA , A.W. VARSHA , V. SHANTHI , K. RAMANATHAN , R. RAJASEKARAN . A computational approach to explore the functional missense mutations in the spindle check point protein Mad1[J]. Frontiers in Biology, 2013 , 8(6) : 618 -625 . DOI: 10.1007/s11515-013-1280-0

Acknowledgement

The authors thank the management of Vellore Institute of Technology University for providing the facilities to carry out this work.
Compliance with ethics guidelines
Merlin Lopus, Chandrasekaran P, Sreevishnupriya K, R. Rajasekaran, Ramanathan K, ShanthiV declare that they have no conflict of interest.
This article does not contain any studies with human or animal subjects performed by the any of the authors.
1
Bava K A, Gromiha M M, Uedaira H, Kitajima K, Sarai A (2004). ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res, 32(90001 Database issue): D120–D121

DOI PMID

2
Berman H M, Battistuz T, Bhat T N, Bluhm W F, Bourne P E, Burkhardt K, Feng Z, Gilliland G L, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook J D, Zardecki C (2002). The Protein Data Bank. Acta Crystallogr D Biol Crystallogr, 58(Pt 6 No 1): 899–907

DOI PMID

3
Bharadwaj R, Yu H (2004). The spindle checkpoint, aneuploidy, and cancer. Oncogene, 23(11): 2016–2027

DOI PMID

4
Boeckmann B, Bairoch A, Apweiler R, Blatter M C, Estreicher A, Gasteiger E, Martin M J, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res, 31(1): 365–370

DOI PMID

5
Brady D M, Hardwick K G (2000). Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr Biol, 10(11): 675–678

DOI PMID

6
Cahill D P, Lengauer C, Yu J, Riggins G J, Willson J K, Markowitz S D, Kinzler K W, Vogelstein B (1998). Mutations of mitotic checkpoint genes in human cancers. Nature, 392(6673): 300–303

DOI PMID

7
Capriotti E, Fariselli P, Casadio R (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res, 33(Web Server Web Server issue): W306-10

DOI PMID

8
Carlson H A, McCammon J A (2000). Accommodating protein flexibility in computational drug design. Mol Pharmacol, 57(2): 213–218

PMID

9
Chao W C, Kulkarni K, Zhang Z, Kong E H, Barford D (2012). Structure of the mitotic checkpoint complex. Nature, 484(7393): 208–213

DOI PMID

10
Chen R H, Shevchenko A, Mann M, Murray A W (1998). Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol, 143(2): 283–295

DOI PMID

11
Chen R H, Waters J C, Salmon E D, Murray A W (1996). Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science, 274(5285): 242–246

DOI PMID

12
Chung E, Chen R H (2002). Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Mol Biol Cell, 13(5): 1501–1511

DOI PMID

13
Connolly M L (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science, 221(4612): 709–713

DOI PMID

14
Delarue M, Dumas P (2004). On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci USA, 101(18): 6957–6962

DOI PMID

15
Duhovny D, Nussinov R, Wolfson H J (2002). Efficient unbound docking of rigid molecules. In: Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI) Lecture Notes in Computer Science, Rome, Italy, 2452: 185–200

16
Fava L L, Kaulich M, Nigg E A, Santamaria A (2011). Probing the in vivo function of Mad1:C-Mad2 in the spindle assembly checkpoint. EMBO J, 30(16): 3322–3336

DOI PMID

17
Gemma A, Seike M, Seike Y, Uematsu K, Hibino S, Kurimoto F, Yoshimura A, Shibuya M, Harris C C, Kudoh S (2000). Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosomes Cancer, 29(3): 213–218

DOI PMID

18
Han J H, Kerrison N, Chothia C, Teichmann S A (2006). Divergence of interdomain geometry in two-domain proteins. Structure, 14(5): 935–945

DOI PMID

19
Han S, Park K, Kim H Y, Lee M S, Kim H J, Kim Y D, Yuh Y J, Kim S R, Suh H S (2000). Clinical implication of altered expression of Mad1 protein in human breast carcinoma. Cancer, 88(7): 1623–1632

DOI PMID

20
Hardwick K G, Weiss E, Luca F C, Winey M, Murray A W (1996). Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science, 273(5277): 953–956

DOI PMID

21
Hinkle A, Tobacman L S (2003). Folding and function of the troponin tail domain. Effects of cardiomyopathic troponin T mutations. J Biol Chem, 278(1): 506–513

DOI PMID

22
Hoyt M A, Totis L, Roberts B T S (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 66(3): 507–517

DOI PMID

23
Hwang L H, Lau L F, Smith D L, Mistrot C A, Hardwick K G, Hwang E S, Amon A, Murray A W (1998). Budding yeast Cdc20: a target of the spindle checkpoint. Science, 279(5353): 1041–1044

DOI PMID

24
Jallepalli P V, Lengauer C (2001). Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer, 1(2): 109–117

DOI PMID

25
Kim S H, Lin D P, Matsumoto S, Kitazono A, Matsumoto T (1998). Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science, 279(5353): 1045–1047

DOI PMID

26
Li R, Murray A W (1991). Feedback control of mitosis in budding yeast. Cell, 66(3): 519–531

DOI PMID

27
Lindahl E, Azuara C, Koehl P, Delarue M (2006). NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res, 34(Web Server Web Server issue): W52-6

DOI PMID

28
Lopes C S, Sunkel C E (2003). The spindle checkpoint: from normal cell division to tumorigenesis. Arch Med Res, 34(3): 155–165

DOI PMID

29
Michael S C, Gary J G (1995).Microinjection of mitotic cells with the 3F3/2 Anti-phosphoepitope antibody delays the onset of anaphase. J Cell Biol, 129 (5): 1195–1204

30
Mimori K, Inoue H, Alder H, Ueo H, Tanaka Y, Mori M (2001). Mutation analysis of hBUB1, human mitotic checkpoint gene in multiple carcinomas. Oncol Rep, 8(1): 39–42

PMID

31
Ng P C, Henikoff S (2001). Predicting deleterious amino acid substitutions. Genome Res, 11(5): 863–874

DOI PMID

32
Ng P C, Henikoff S (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814

DOI PMID

33
Nomoto S, Haruki N, Takahashi T, Masuda A, Koshikawa T, Takahashi T, Fujii Y, Osada H, Takahashi T (1999). Search for in vivo somatic mutations in the mitotic checkpoint gene, hMAD1, in human lung cancers. Oncogene, 18(50): 7180–7183

DOI PMID

34
Ohshima K, Haraoka S, Yoshioka S, Hamasaki M, Fujiki T, Suzumiya J, Kawasaki C, Kanda M, Kikuchi M (2000). Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett, 158(2): 141–150

DOI PMID

35
Peters J M (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol, 7(9): 644–656

DOI PMID

36
Peters J M (2008). Checkpoint control: the journey continues. Curr Biol, 18(4): R170–R172

DOI PMID

37
Rajasekaran R, Priya Doss C G, Sudandiradoss C, Ramanathan K, Sethumadhavan R (2008). In silico analysis of structural and functional consequences in p16INK4A by deleterious nsSNPs associated CDKN2A gene in malignant melanoma. Biochimie, 90(10): 1523–1529

DOI PMID

38
Ramensky V, Bork P, Sunyaev S (2002). Human non-synonymous SNPs: server and survey. Nucleic Acids Res, 30(17): 3894–3900

DOI PMID

39
Reis R M, Nakamura M, Masuoka J, Watanabe T, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2001). Mutation analysis of hBUB1, hBUBR1 and hBUB3 genes in glioblastomas. Acta Neuropathol, 101(4): 297–304

PMID

40
Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna J D, Shimokata K, Hasegawa Y (2000). Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Jpn J Cancer Res, 91(5): 504–509

DOI PMID

41
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson H J (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res, 33(Web Server issue): W363-7

DOI PMID

42
Suhre K, Sanejouand Y H (2004). ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res, 32( Web Server issue): W610-4

DOI PMID

43
Tina K G, Bhadra R, Srinivasan N (2007). PIC: Protein Interactions Calculator. Nucleic Acids Res, 35(Web Server issue): W473-6

DOI PMID

44
Tsukasaki K, Miller C W, Greenspun E, Eshaghian S, Kawabata H, Fujimoto T, Tomonaga M, Sawyers C, Said J W, Koeffler H P (2001). Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene, 20(25): 3301–3305

DOI PMID

45
Varfolomeev S D, Uporov I V, Fedorov E V (2002). Bioinformatics and molecular modeling in chemical enzymology. Active sites of hydrolases. Biochemistry (Mosc), 67(10): 1099–1108

DOI PMID

46
Wang X, Jin D Y, Ng R W, Feng H, Wong Y C, Cheung A L, Tsao S W (2002). Significance of MAD2 expression to mitotic checkpoint control in ovarian cancer cells. Cancer Res, 62(6): 1662–1668

PMID

47
Yip Y L, Famiglietti M, Gos A, Duek P D, David F P, Gateau A, Bairoch A (2008). Annotating single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase. Hum Mutat, 29(3): 361–366

DOI PMID

48
Yip Y L, Scheib H, Diemand A V, Gattiker A, Famiglietti L M, Gasteiger E, Bairoch A (2004). The Swiss-Prot variant page and the ModSNP database: a resource for sequence and structure information on human protein variants. Hum Mutat, 23(5): 464–470

DOI PMID

49
Yu H (2002). Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol, 14(6): 706–714

DOI PMID

50
Zhang C, Vasmatzis G, Cornette J L, DeLisi C (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. J Mol Biol, 267(3): 707–726

DOI PMID

Outlines

/