REVIEW

Neurotrophin treatment to promote regeneration after traumatic CNS injury

  • Lakshmi KELAMANGALATH ,
  • George M. SMITH
Expand
  • Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University School of Medicine, Philadelphia, PA 19140-4106, USA

Received date: 21 Mar 2013

Accepted date: 18 Jun 2013

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.

Cite this article

Lakshmi KELAMANGALATH , George M. SMITH . Neurotrophin treatment to promote regeneration after traumatic CNS injury[J]. Frontiers in Biology, 2013 , 8(5) : 486 -495 . DOI: 10.1007/s11515-013-1269-8

Acknowledgements

This work was funded by a grant from the National Institute of Neurological Disorders and Stroke R01 NS060784 and the Shriners Hospital for Pediatric Research grants SHC 84050 and SHC 85200 (GMS).
Compliance with ethic guidelines
1
Bamber N I, Li H Y, Lu X B, Oudega M, Aebischer P, Xu X M (2001). Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci, 13(2): 257–268

PMID

2
Bartus K, James N D, Bosch K D, Bradbury E J (2012). Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol, 235(1): 5–17

DOI PMID

3
Bibel M, Barde Y A (2000). Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev, 14(23): 2919–2937

DOI PMID

4
Blesch A, Yang H, Weidner N, Hoang A, Otero D (2004). Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci, 27(2): 190–201

DOI PMID

5
Blum R, Konnerth A (2005). Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda), 20(1): 70–78

DOI PMID

6
Bonner J F, Blesch A, Neuhuber B, Fischer I (2010). Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res, 88(6): 1182–1192

PMID

7
Boyd J G, Gordon T (2002). A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci, 15(4): 613–626

DOI PMID

8
Bretzner F, Liu J, Currie E, Roskams A J, Tetzlaff W (2008). Undesired effects of a combinatorial treatment for spinal cord injury—transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. Eur J Neurosci, 28(9): 1795–1807

DOI PMID

9
Brock J H, Rosenzweig E S, Blesch A, Moseanko R, Havton L A, Edgerton V R, Tuszynski M H (2010). Local and remote growth factor effects after primate spinal cord injury. J Neurosci, 30(29): 9728–9737

DOI PMID

10
Cajal S R y 1928. Degeneration and regeneration of the nervous system. Hafner, New York

11
Cameron A A, Smith G M, Randall D C, Brown D R, Rabchevsky A G (2006). Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci, 26(11): 2923–2932

DOI PMID

12
Cao Q, Xu X M, Devries W H, Enzmann G U, Ping P, Tsoulfas P, Wood P M, Bunge M B, Whittemore S R (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci, 25(30): 6947–6957

DOI PMID

13
Chan J R, Cosgaya J M, Wu Y J, Shooter E M (2001). Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci USA, 98(25): 14661–14668

DOI PMID

14
Chan J R, Watkins T A, Cosgaya J M, Zhang C Z, Chen L, Reichardt L F, Shooter E M, Barres B A (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron, 43(2): 183–191

DOI PMID

15
Chao M V (2003a). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci, 4(4): 299–309

DOI PMID

16
Chao M V (2003b). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci, 4(4): 299–309

DOI PMID

17
Chiaretti A, Antonelli A, Genovese O, Pezzotti P, Rocco C D, Viola L, Riccardi R (2008). Nerve growth factor and doublecortin expression correlates with improved outcome in children with severe traumatic brain injury. J Trauma, 65(1): 80–85

DOI PMID

18
Chu Q, Wang Y, Fu X, Zhang S (2004). Mechanism of in vitro differentiation of bone marrow stromal cells into neuron-like cells. J Huazhong Univ Sci Technolog Med Sci, 24(3): 259–261

DOI PMID

19
Cosgaya J M, Chan J R, Shooter E M (2002). The neurotrophin receptor p75NTR as a positive modulator of myelination. Science, 298(5596): 1245–1248

DOI PMID

20
Coumans J V, Lin T T, Dai H N, MacArthur L, McAtee M, Nash C, Bregman B S (2001). Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci, 21(23): 9334–9344

PMID

21
Deumens R, Koopmans G C, Joosten E A (2005). Regeneration of descending axon tracts after spinal cord injury. Prog Neurobiol, 77(1-2): 57–89

DOI PMID

22
Domeniconi M, Filbin M T (2005). Overcoming inhibitors in myelin to promote axonal regeneration. J Neurol Sci, 233(1-2): 43–47

DOI PMID

23
Epa W R, Markovska K, Barrett G L (2004). The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation. J Neurochem, 89(2): 344–353

DOI PMID

24
Ferguson I A, Koide T, Rush R A (2001). Stimulation of corticospinal tract regeneration in the chronically injured spinal cord. Eur J Neurosci, 13(5): 1059–1064

DOI PMID

25
Ferraro G B, Alabed Y Z, Fournier A E (2004). Molecular targets to promote central nervous system regeneration. Curr Neurovasc Res, 1(1): 61–75

DOI PMID

26
Freidman W J (2010). Proneurotrophin, seizures, and neuronal apoptosis. Neuroscienctist, 16(3): 244–252

DOI

27
Galtrey C M, Kwok J C F, Carulli D, Rhodes K E, Fawcett J W (2008). Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci, 27(6): 1373–1390

DOI PMID

28
Gámez E, Ikezaki K, Fukui M, Matsuda T (2003). Photoconstructs of nerve guidance prosthesis using photoreactive gelatin as a scaffold. Cell Transplant, 12(5): 481–490

PMID

29
Grill R J, Blesch A, Tuszynski M H (1997). Robust growth of chronically injured spinal cord axons induced by grafts of genetically modified NGF-secreting cells. Exp Neurol, 148(2): 444–452

DOI PMID

30
Hendriks W T, Ruitenberg M J, Blits B, Boer G J, Verhaagen J (2004). Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res, 146: 451–476

DOI PMID

31
Höke A, Redett R, Hameed H, Jari R, Zhou C, Li Z B, Griffin J W, Brushart T M (2006). Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci, 26(38): 9646–9655

DOI PMID

32
Hollis E R 2nd, Jamshidi P, Löw K, Blesch A, Tuszynski M H (2009). Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci USA, 106(17): 7215–7220

DOI PMID

33
Hollis E R 2nd, Tuszynski M H (2011). Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics, 8(4): 694–703

DOI PMID

34
Huang E J, Reichardt L F (2003). Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem, 72(1): 609–642

DOI PMID

35
Iarikov D E, Kim B G, Dai H N, McAtee M, Kuhn P L, Bregman B S (2007). Delayed transplantation with exogenous neurotrophin administration enhances plasticity of corticofugal projections after spinal cord injury. J Neurotrauma, 24(4): 690–702

DOI PMID

36
Ide C (1996). Peripheral nerve regeneration. Neurosci Res, 25(2): 101–121

PMID

37
Jin Y, Ziemba K S, Smith G M (2008). Axon growth across a lesion site along a preformed guidance pathway in the brain. Exp Neurol, 210(2): 521–530

DOI PMID

38
Jones L L, Sajed D, Tuszynski M H (2003). Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci, 23(28): 9276–9288

PMID

39
Kadoya K, Tsukada S, Lu P, Coppola G, Geschwind D, Filbin M T, Blesch A, Tuszynski M H (2009). Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron, 64(2): 165–172

DOI PMID

40
Kim G, Choe Y, Park J, Cho S, Kim K (2002). Activation of protein kinase A induces neuronal differentiation of HiB5 hippocampal progenitor cells. Brain Res Mol Brain Res, 109(1-2): 134–145

DOI PMID

41
Kim J E, Liu B P, Park J H, Strittmatter S M (2004). Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron, 44(3): 439–451

DOI PMID

42
Kobayashi N R, Fan D P, Giehl K M, Bedard A M, Wiegand S J, Tetzlaff W (1997). BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci, 17(24): 9583–9595

PMID

43
Kuruvilla R, Zweifel L S, Glebova N O, Lonze B E, Valdez G, Ye H, Ginty D D (2004). A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell, 118(2): 243–255

DOI PMID

44
Kusano K, Enomoto M, Hirai T, Tsoulfas P, Sotome S, Shinomiya K, Okawa A (2010). Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury. Biochem Biophys Res Commun, 393(4): 812–817

DOI PMID

45
Kwon B K, Liu J, Lam C, Plunet W, Oschipok L W, Hauswirth W, Di Polo A, Blesch A, Tetzlaff W (2007). Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine, 32(11): 1164–1173

DOI PMID

46
Kwon B K, Liu J, Messerer C, Kobayashi N R, McGraw J, Oschipok L, Tetzlaff W (2002). Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Proc Natl Acad Sci USA, 99(5): 3246–3251

DOI PMID

47
Lee H, McKeon R J, Bellamkonda R V (2010). Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci USA, 107(8): 3340–3345

DOI PMID

48
Lehmann H C, Höke A (2010). Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets, 9(6): 801–806

DOI PMID

49
Lessmann V, Gottmann K, Malcangio M (2003). Neurotrophin secretion: current facts and future prospects. Prog Neurobiol, 69(5): 341–374

DOI PMID

50
Longhi L, Watson D J, Saatman K E, Thompson H J, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski J Q, Lee V M, Wolfe J H, Stocchetti N, McIntosh T K (2004a). Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma, 21(12): 1723–1736

PMID

51
Longhi L, Watson D J, Saatman K E, Thompson H J, Zhang C, Fujimoto S, Royo N, Castelbuono D, Raghupathi R, Trojanowski J Q, Lee V M, Wolfe J H, Stocchetti N, McIntosh T K (2004b). Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma, 21(12): 1723–1736

PMID

52
Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V (2011). Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS ONE, 6(3): e17899

DOI PMID

53
Lu B, Pang P T, Woo N H (2005). The yin and yang of neurotrophin action. Nat Rev Neurosci, 6(8): 603–614

DOI PMID

54
Lu P, Blesch A, Tuszynski M H (2001). Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol, 436(4): 456–470

DOI PMID

55
Lu P, Jones L L, Snyder E Y, Tuszynski M H (2003). Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol, 181(2): 115–129

DOI PMID

56
Mahmood A, Lu D, Wang L, Chopp M (2002). Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma, 19(12): 1609–1617

DOI PMID

57
Massey J M, Amps J, Viapiano M S, Matthews R T, Wagoner M R, Whitaker C M, Alilain W, Yonkof A L, Khalyfa A, Cooper N G F, Silver J, Onifer S M (2008). Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol, 209(2): 426–445

DOI PMID

58
Nielson J L, Strong M K, Steward O (2011). A reassessment of whether cortical motor neurons die following spinal cord injury. J Comp Neurol, 519(14): 2852–2869

DOI PMID

59
Novikova L N, Novikov L N, Kellerth J O (2000). Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci, 12(2): 776–780

DOI PMID

60
Philips M F, Mattiasson G, Wieloch T, Björklund A, Johansson B B, Tomasevic G, Martínez-Serrano A, Lenzlinger P M, Sinson G, Grady M S, McIntosh T K (2001). Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg, 94(5): 765–774

DOI PMID

61
Ramer M S, Priestley J V, McMahon S B (2000). Functional regeneration of sensory axons into the adult spinal cord. Nature, 403(6767): 312–316

DOI PMID

62
Ray S K, Dixon C E, Banik N L (2002). Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol, 17(4): 1137–1152

PMID

63
Romero M I, Rangappa N, Garry M G, Smith G M (2001). Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci, 21(21): 8408–8416

PMID

64
Romero M I, Smith G M (1998). Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade. Gene Ther, 5(12): 1612–1621

DOI PMID

65
Royo N C, Schouten J W, Fulp C T, Shimizu S, Marklund N, Graham D I, McIntosh T K (2003). From cell death to neuronal regeneration: building a new brain after traumatic brain injury. J Neuropathol Exp Neurol, 62(8): 801–811

PMID

66
Sinson G, Voddi M, McIntosh T K (1996). Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat. J Neurosurg, 84(4): 655–662

DOI PMID

67
Smith GMandOnifer S (2011) Construction of pathways to promote axon growth within the adult central nervous system. Brain Research Bulletin Brain Res Bull. 2011 84(4–5).

68
Smith G M, Romero M I (1999). Adenoviral-mediated gene transfer to enhance neuronal survival, growth, and regeneration. J Neurosci Res, 55(2): 147–157

DOI PMID

69
Tang X Q, Cai J, Nelson K D, Peng X J, Smith G M (2004a). Functional repair after dorsal root rhizotomy using nerve conduits and neurotrophic molecules. Eur J Neurosci, 20(5): 1211–1218

DOI PMID

70
Tang X Q, Tanelian D L, Smith G M (2004b). Semaphorin3A inhibits nerve growth factor-induced sprouting of nociceptive afferents in adult rat spinal cord. J Neurosci, 24(4): 819–827

DOI PMID

71
Taylor S J, Rosenzweig E S, McDonald J W 3rd, Sakiyama-Elbert S E (2006). Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury. J Control Release, 113(3): 226–235

DOI PMID

72
Tobias C A, Shumsky J S, Shibata M, Tuszynski M H, Fischer I, Tessler A, Murray M (2003). Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol, 184(1): 97–113

DOI PMID

73
Tonra J R, Curtis R, Wong V, Cliffer K D, Park J S, Timmes A, Nguyen T, Lindsay R M, Acheson A, DiStefano P S (1998). Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci, 18(11): 4374–4383

PMID

74
Trojanowski J Q, Kleppner S R, Hartley R S, Miyazono M, Fraser N W, Kesari S, Lee V M (1997). Transfectable and transplantable postmitotic human neurons: a potential “platform” for gene therapy of nervous system diseases. Exp Neurol, 144(1): 92–97

DOI PMID

75
Tuszynski M H, Gabriel K, Gage F H, Suhr S, Meyer S, Rosetti A (1996). Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol, 137(1): 157–173

DOI PMID

76
Vavrek R, Girgis J, Tetzlaff W, Hiebert G W, Fouad K (2006). BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain, 129(Pt 6): 1534–1545

DOI PMID

77
Wang Z T, Yao W F, Deng Q J, Zhang X H, Zhang J N (2013). Protective effects of BDNF overexpression bone marrow stromal cell transplantation in rat models of traumatic brain injury. J Mol Neurosci, 49(2): 409–416

DOI PMID

78
Woolley A G, Tait K J, Hurren B J, Fisher L, Sheard P W, Duxson M J (2008). Developmental loss of NT-3 in vivo results in reduced levels of myelin-specific proteins, a reduced extent of myelination and increased apoptosis of Schwann cells. Glia, 56(3): 306–317

DOI PMID

79
Xiao J, Wong A, Kilpatrick T, Murray S (2010). BDNF ENHANCES CENTRAL NERVOUS SYSTEM MYELINATION VIA A DIRECT SIGNALLING TO OLIGODENDROGLIAL TrKB RECEPTORS. J Neurochem, 115: 36–36

PMID

80
Xiao J H, Kilpatrick T J, Murray S S (2009). The role of neurotrophins in the regulation of myelin development. Neurosignals, 17(4): 265–276

DOI PMID

81
Xu X M, Guénard V, Kleitman N, Aebischer P, Bunge M B (1995). A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol, 134(2): 261–272

DOI PMID

82
Ye J H, Houle J D (1997). Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol, 143(1): 70–81

DOI PMID

83
Zhou X F, Li W P, Zhou F H, Zhong J H, Mi J X, Wu L L, Xian C J (2005). Differential effects of endogenous brain-derived neurotrophic factor on the survival of axotomized sensory neurons in dorsal root ganglia: a possible role for the p75 neurotrophin receptor. Neuroscience, 132(3): 591–603

DOI PMID

84
Zhou Z, Chen H, Zhang K, Yang H, Liu J, Huang Q (2003). Protective effect of nerve growth factor on neurons after traumatic brain injury. J Basic Clin Physiol Pharmacol, 14(3): 217–224

DOI PMID

85
Zou L L, Huang L, Hayes R L, Black C, Qiu Y H, Perez-Polo J R, Le W, Clifton G L, Yang K (1999). Liposome-mediated NGF gene transfection following neuronal injury: potential therapeutic applications. Gene Ther, 6(6): 994–1005

DOI PMID

Outlines

/