MINI-REVIEW

MicroRNA rules: Made to be broken

  • P. Shannon PENDERGRAST , 1 ,
  • Tom VOLPE , 2
Expand
  • 1. Ymir Genomics, 516 Green Street, 1A, Cambridge, MA 02139, USA
  • 2. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA

Received date: 21 Mar 2013

Accepted date: 05 Jul 2013

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression. For over a decade the deluge of research describing the biogenesis and activity of miRNAs has lead researchers to postulate rules to help make sense of the enormous amount of data produced. These rules are repeated in miRNA research papers and reviews. While these rules have been helpful one must be conscious of their limitations or risk missing future breakthroughs. Here we describe some of the most commonly stated rules, the reasoning behind their formation, their uses, and limitations.

Cite this article

P. Shannon PENDERGRAST , Tom VOLPE . MicroRNA rules: Made to be broken[J]. Frontiers in Biology, 2013 , 8(5) : 468 -474 . DOI: 10.1007/s11515-013-1273-z

Acknowledgments

The authors wish to thank Anna Markowska and Michele McDonough for helpful comments on the manuscript. We thank Scott Pendergrast and Stephen Pendergrast for support and helpful discussions.
Compliance with ethics and guidelines
1
Alexiou P, Maragkakis M, Papadopoulos G L, Reczko M, Hatzigeorgiou A G (2009). Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics, 25(23): 3049-3055

DOI PMID

2
Baek D, Villén J, Shin C, Camargo F D, Gygi S P, Bartel D P (2008). The impact of microRNAs on protein output. Nature, 455(7209): 64-71

DOI PMID

3
Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli A E (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4): 553-563

DOI PMID

4
Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2): 215-233

DOI PMID

5
Bazzini A A, Lee M T, Giraldez A J (2012). Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science, 336(6078): 233-237

DOI PMID

6
Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev, 20(14): 1885-1898

DOI PMID

7
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 37(7): 766-770

DOI PMID

8
Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, Vos J, Verloop R, van de Wetering M, Guryev V, Takada S, van Zonneveld A J, Mano H, Plasterk R, Cuppen E (2006). Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res, 16(10): 1289-1298

DOI PMID

9
Brennecke J, Stark A, Cohen S M (2005). Not miR-ly muscular: microRNAs and muscle development. Genes Dev, 19(19): 2261-2264

DOI PMID

10
Carthew R W, Sontheimer E J (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4): 642-655

DOI PMID

11
Chi S W, Zang J B, Mele A, Darnell R B (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254): 479-486

PMID

12
D'Alessio G, Riordan J F (1997) Ribonucleases: Structures and Functions. Academic Press, New York, NY

13
Djuranovic S, Nahvi A, Green R (2012). miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science, 336(6078): 237-240

DOI PMID

14
Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836): 494-498

DOI PMID

15
Elefant N, Altuvia Y, Margalit H (2011). A wide repertoire of miRNA binding sites: prediction and functional implications. Bioinformatics, 27(22): 3093-3101

DOI PMID

16
Elkayam E, Kuhn C D, Tocilj A, Haase A D, Greene E M, Hannon G J, Joshua-Tor L (2012). The structure of human argonaute-2 in complex with miR-20a. Cell, 150(1): 100-110

DOI PMID

17
Friedman R C, Farh K K, Burge C B, Bartel D P (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19(1): 92-105

DOI PMID

18
Giraldez A J, Mishima Y, Rihel J, Grocock R J, Van Dongen S, Inoue K, Enright A J, Schier A F (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 312(5770): 75-79

DOI PMID

19
Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 27(1): 91-105

DOI PMID

20
Gu S, Jin L, Zhang F, Sarnow P, Kay M A (2009). Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol, 16(2): 144-150

DOI PMID

21
Guo H, Ingolia N T, Weissman J S, Bartel D P (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308): 835-840

DOI PMID

22
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141(1): 129-141

DOI PMID

23
Hendrickson D G, Hogan D J, McCullough H L, Myers J W, Herschlag D, Ferrell J E, Brown P O (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol, 7(11): e1000238

DOI PMID

24
Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309(5740): 1577-1581

DOI PMID

25
Kim V N, Han J, Siomi M C (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 10(2): 126-139

DOI PMID

26
Krol J, Krzyzosiak W J (2004). Structural aspects of microRNA biogenesis. IUBMB Life, 56(2): 95-100

DOI PMID

27
Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11(9): 597-610

PMID

28
Krützfeldt J, Rajewsky N, Braich R, Rajeev K G, Tuschl T, Manoharan M, Stoffel M (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068): 685-689

DOI PMID

29
Lee R C, Feinbaum R L, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5): 843-854

DOI PMID

30
Lee S, Vasudevan S (2013). Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol, 768: 97-126

DOI PMID

31
Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell, 115(7): 787-798

DOI PMID

32
Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P (2003). The microRNAs of Caenorhabditis elegans. Genes Dev, 17(8): 991-1008

DOI PMID

33
Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589): 2053-2056

DOI PMID

34
Machlin E S, Sarnow P, Sagan S M (2011). Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA, 108(8): 3193-3198

DOI PMID

35
Mayr C, Bartel D P (2009). Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138(4): 673-684

DOI PMID

36
Mitchell P S, Parkin R K, Kroh E M, Fritz B R, Wyman S K, Pogosova-Agadjanyan E L, Peterson A, Noteboom J, O’Briant K C, Allen A, Lin D W, Urban N, Drescher C W, Knudsen B S, Stirewalt D L, Gentleman R, Vessella R L, Nelson P S, Martin D B, Tewari M (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA, 105(30): 10513-10518

DOI PMID

37
Miyoshi K, Miyoshi T, Siomi H (2010). Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics, 284(2): 95-103

DOI PMID

38
Nguyen H T, Frasch M (2006). MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Curr Opin Genet Dev, 16(5): 533-539

DOI PMID

39
Olsen P H, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216(2): 671-680

DOI PMID

40
Pasquinelli A E, McCoy A, Jiménez E, Saló E, Ruvkun G, Martindale M Q, Baguñà J (2003). Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evol Dev, 5(4): 372-378

DOI PMID

41
Pasquinelli A E, Reinhart B J, Slack F, Martindale M Q, Kuroda M I, Maller B, Hayward D C, Ball E E, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808): 86-89

DOI PMID

42
Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA, 11(11): 1640-1647

DOI PMID

43
Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772): 901-906

DOI PMID

44
Roush S, Slack F J (2008). The let-7 family of microRNAs. Trends Cell Biol, 18(10): 505-516

DOI PMID

45
Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science, 320(5883): 1643-1647

DOI PMID

46
Schirle N T, MacRae I J (2012). The crystal structure of human Argonaute2. Science, 336(6084): 1037-1040

DOI PMID

47
Schnall-Levin M, Rissland O S, Johnston W K, Perrimon N, Bartel D P, Berger B (2011). Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res, 21(9): 1395-1403

DOI PMID

48
Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209): 58-63

DOI PMID

49
Shin C, Nam J W, Farh K K, Chiang H R, Shkumatava A, Bartel D P (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell, 38(6): 789-802

DOI PMID

50
Sokol N S, Ambros V (2005). Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev, 19(19): 2343-2354

DOI PMID

51
Sun J, Gao B, Zhou M, Wang Z Z, Zhang F, Deng J E, Li X (2013). Comparative genomic analysis reveals evolutionary characteristics and patterns of microRNA clusters in vertebrates. Gene, 512(2): 383-391

DOI PMID

52
Tsui N B, Ng E K, Lo Y M (2002). Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem, 48(10): 1647-1653

PMID

53
Wang Y, Sheng G, Juranek S, Tuschl T, Patel D J (2008). Structure of the guide-strand-containing argonaute silencing complex. Nature, 456(7219): 209-213

DOI PMID

54
Weber J A, Baxter D H, Zhang S, Huang D Y, Huang K H, Lee M J, Galas D J, Wang K (2010). The microRNA spectrum in 12 body fluids. Clin Chem, 56(11): 1733-1741

DOI PMID

55
Wen M, Shen Y, Shi S, Tang T (2012). miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics, 13(1): 140

DOI PMID

56
Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5): 855-862

DOI PMID

57
Williamson V, Kim A, Xie B, McMichael G O, Gao Y, Vladimirov V (2013). Detecting miRNAs in deep-sequencing data: a software performance comparison and evaluation. Brief Bioinform, 14(1): 36-45

DOI PMID

58
Wu L, Fan J, Belasco J G (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 103(11): 4034-4039

DOI PMID

59
Yang J S, Lai E C (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6): 892-903

DOI PMID

60
Yekta S, Shih I H, Bartel D P (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304(5670): 594-596

DOI PMID

61
Zamore P D, Tuschl T, Sharp P A, Bartel D P (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101(1): 25-33

DOI PMID

62
Zhang R, Wang Y Q, Su B (2008). Molecular evolution of a primate-specific microRNA family. Mol Biol Evol, 25(7): 1493-1502

DOI PMID

Outlines

/