MINI-REVIEW

Current approaches for efficient genetic editing in human pluripotent stem cells

  • Bipasha MUKHERJEE-CLAVIN 1 ,
  • Mark TOMISHIMA 2 ,
  • Gabsang LEE , 1
Expand
  • 1. Institute for Cell Engineering, Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
  • 2. SKI Stem Cell Research Facility, Sloan-Kettering Institute, New York, NY 10065, USA

Received date: 25 Jun 2013

Accepted date: 08 Jul 2013

Published date: 01 Oct 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Human pluripotent stem cells have been much anticipated as a powerful system to study developmental events, model genetic disorders, and serve as a source of autologous cells for cell therapy in genetic disorders. Precise genetic manipulation is crucial to all these applications, and many recent advances have been made in site specific nuclease systems like zinc finger nucleases, TALENs, and CRISPR/Cas. In this review, we address the importance of site-specific genome modification and how this technology can be applied to manipulate human pluripotent stem cells.

Cite this article

Bipasha MUKHERJEE-CLAVIN , Mark TOMISHIMA , Gabsang LEE . Current approaches for efficient genetic editing in human pluripotent stem cells[J]. Frontiers in Biology, 2013 , 8(5) : 461 -467 . DOI: 10.1007/s11515-013-1275-x

Acknowledgements

We would like to thank members of the Lee laboratory for valuable discussions on the manuscript. The Robertson Investigator Award from the New York Stem Cell Foundation (G.L.) and the Maryland Stem Cell Research Fund (G.L.) supported experiments in the Lee laboratory.
Competing financial interests
The authors declare no competing financial interests.
1
Bibikova M, Beumer K, Trautman J K, Carroll D (2003). Enhancing gene targeting with designed zinc finger nucleases. Science, 300(5620): 764

DOI PMID

2
Bibikova M, Golic M, Golic K G, Carroll D (2002). Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 161(3): 1169–1175

PMID

3
Bogdanove A J, Voytas D F (2011). TAL effectors: customizable proteins for DNA targeting. Science, 333(6051): 1843–1846

DOI PMID

4
Brunet E, Simsek D, Tomishima M, DeKelver R, Choi V M, Gregory P, Urnov F, Weinstock D M, Jasin M (2009). Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci USA, 106(26): 10620–10625

DOI PMID

5
Bultmann S, Morbitzer R, Schmidt C S, Thanisch K, Spada F, Elsaesser J, Lahaye T, Leonhardt H (2012). Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res, 40(12): 5368–5377

DOI PMID

6
Carroll D (2011). Genome engineering with zinc-finger nucleases. Genetics, 188(4): 773–782

DOI PMID

7
Cermak T, Doyle E L, Christian M, Wang L, Zhang Y, Schmidt C, Baller J A, Somia N V, Bogdanove A J, Voytas D F (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 39(12): e82

DOI PMID

8
Chaikind B, Kilambi K P, Gray J J, Ostermeier M (2012). Targeted DNA methylation using an artificially bisected M.HhaI fused to zinc fingers. PLoS ONE, 7(9): e44852

DOI PMID

9
Chang C J, Bouhassira E E (2012). Zinc-finger nuclease-mediated correction of α-thalassemia in iPS cells. Blood, 120(19): 3906–3914

DOI PMID

10
Cho S W, Kim S, Kim J M, Kim J S (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 31(3): 230–232

DOI PMID

11
Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J, Voytas D F (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2): 757–761

DOI PMID

12
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121): 819–823

DOI PMID

13
Ding Q, Lee Y K, Schaefer E A, Peters D T, Veres A, Kim K, Kuperwasser N, Motola D L, Meissner T B, Hendriks W T, Trevisan M, Gupta R M, Moisan A, Banks E, Friesen M, Schinzel R T, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin L L, Peng L F, Chung R T, Musunuru K, Cowan C A (2013). A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 12(2): 238–251

DOI PMID

14
Doetschman T, Gregg R G, Maeda N, Hooper M L, Melton D W, Thompson S, Smithies O (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 330(6148): 576–578

DOI PMID

15
Doyle J P, Dougherty J D, Heiman M, Schmidt E F, Stevens T R, Ma G, Bupp S, Shrestha P, Shah R D, Doughty M L, Gong S, Greengard P, Heintz N (2008). Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell, 135(4): 749–762

DOI PMID

16
Durai S, Mani M, Kandavelou K, Wu J, Porteus M H, Chandrasegaran S (2005). Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res, 33(18): 5978–5990

DOI PMID

17
Heiman M, Schaefer A, Gong S, Peterson J D, Day M, Ramsey K E, Suárez-Fariñas M, Schwarz C, Stephan D A, Surmeier D J, Greengard P, Heintz N (2008). A translational profiling approach for the molecular characterization of CNS cell types. Cell, 135(4): 738–748

DOI PMID

18
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver R C, Katibah G E, Amora R, Boydston E A, Zeitler B, Meng X, Miller J C, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jaenisch R (2009). Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol, 27(9): 851–857

DOI PMID

19
Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 29(8): 731–734

DOI PMID

20
Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3): 227–229

DOI PMID

21
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821

DOI PMID

22
Kim Y, Kweon J, Kim A, Chon J K, Yoo J Y, Kim H J, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee M S, Go E M, Song H J, Kim H, Cho N, Bang D, Kim S, Kim J S (2013). A library of TAL effector nucleases spanning the human genome. Nat Biotechnol, 31(3): 251–258

DOI PMID

23
Lengner C J, Gimelbrant A A, Erwin J A, Cheng A W, Guenther M G, Welstead G G, Alagappan R, Frampton G M, Xu P, Muffat J, Santagata S, Powers D, Barrett C B, Young R A, Lee J T, Jaenisch R, Mitalipova M (2010). Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell, 141(5): 872–883

DOI PMID

24
Liu H, Ye Z, Kim Y, Sharkis S, Jang Y Y (2010). Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51(5): 1810–1819

DOI PMID

25
Maeder M L, Thibodeau-Beganny S, Osiak A, Wright D A, Anthony R M, Eichtinger M, Jiang T, Foley J E, Winfrey R J, Townsend J A, Unger-Wallace E, Sander J D, Müller-Lerch F, Fu F, Pearlberg J, Göbel C, Dassie J P, Pruett-Miller S M, Porteus M H, Sgroi D C, Iafrate A J, Dobbs D, McCray P B Jr, Cathomen T, Voytas D F, Joung J K (2008). Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell, 31(2): 294–301

DOI PMID

26
Mali P, Aach J, Lee J H, Levner D, Nip L, Church G M (2013). Barcoding cells using cell-surface programmable DNA-binding domains. Nat Methods, 10(5): 403–406

DOI PMID

27
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826

DOI PMID

28
Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D, Rebar E J (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 29(2): 143–148

DOI PMID

29
Mussolino C, Cathomen T (2011). On target? Tracing zinc-finger-nuclease specificity. Nat Methods, 8(9): 725–726

DOI PMID

30
Nishiyama A, Xin L, Sharov A A, Thomas M, Mowrer G, Meyers E, Piao Y, Mehta S, Yee S, Nakatake Y, Stagg C, Sharova L, Correa-Cerro L S, Bassey U, Hoang H, Kim E, Tapnio R, Qian Y, Dudekula D, Zalzman M, Li M, Falco G, Yang H T, Lee S L, Monti M, Stanghellini I, Islam M N, Nagaraja R, Goldberg I, Wang W, Longo D L, Schlessinger D, Ko M S (2009). Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell, 5(4): 420–433

DOI PMID

31
Piganeau M, Ghezraoui H, De Cian A, Guittat L, Tomishima M, Perrouault L, René O, Katibah G E, Zhang L, Holmes M C, Doyon Y, Concordet J P, Giovannangeli C, Jasin M, Brunet E (2013). Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res, 23(7): 1182–1193

DOI PMID

32
Porteus M H, Baltimore D (2003). Chimeric nucleases stimulate gene targeting in human cells. Science, 300(5620): 763

DOI PMID

33
Qi L S, Larson M H, Gilbert L A, Doudna J A, Weissman J S, Arkin A P, Lim W A (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5): 1173–1183

DOI PMID

34
Sermon K D, Simon C, Braude P, Viville S, Borstlap J, Veiga A (2009). Creation of a registry for human embryonic stem cells carrying an inherited defect: joint collaboration between ESHRE and hESCreg. Hum Reprod, 24(7): 1556–1560

DOI PMID

35
Smih F, Rouet P, Romanienko P J, Jasin M (1995). Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res, 23(24): 5012–5019

DOI PMID

36
Soldner F, Laganière J, Cheng A W, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe L I, Myers R H, Lindquist S, Zhang L, Guschin D, Fong L K, Vu B J, Meng X, Urnov F D, Rebar E J, Gregory P D, Zhang H S, Jaenisch R (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2): 318–331

DOI PMID

37
Stephenson E L, Mason C, Braude P R (2009). Preimplantation genetic diagnosis as a source of human embryonic stem cells for disease research and drug discovery. BJOG, 116(2): 158–165

DOI PMID

38
Sussman D, Chadsey M, Fauce S, Engel A, Bruett A, Monnat R Jr, Stoddard B L, Seligman L M (2004). Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol, 342(1): 31–41

DOI PMID

39
Tachibana M, Amato P, Sparman M, Gutierrez N M, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee H S, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer R L, Wolf D, Mitalipov S (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153(6): 1228–1238

DOI PMID

40
Tomishima M J, Hadjantonakis A K, Gong S, Studer L (2007). Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library. Stem Cells, 25(1): 39–45

DOI PMID

41
Urnov F D, Rebar E J, Holmes M C, Zhang H S, Gregory P D (2010). Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 11(9): 636–646

DOI PMID

42
Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4): 910–918

DOI PMID

43
Wang Y, Zheng C G, Jiang Y, Zhang J, Chen J, Yao C, Zhao Q, Liu S, Chen K, Du J, Yang Z, Gao S (2012). Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res, 22(4): 637–648

DOI PMID

44
Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, Zhu Z, Lin S, Zhang B (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res,

DOI PMID

45
Yamanaka S, Blau H M (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465(7299): 704–712

DOI PMID

46
Yu J, Thomson J A (2008). Pluripotent stem cell lines. Genes Dev, 22(15): 1987–1997

DOI PMID

47
Yusa K, Rashid S T, Strick-Marchand H, Varela I, Liu P Q, Paschon D E, Miranda E, Ordóñez A, Hannan N R, Rouhani F J, Darche S, Alexander G, Marciniak S J, Fusaki N, Hasegawa M, Holmes M C, Di Santo J P, Lomas D A, Bradley A, Vallier L (2011). Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 478(7369): 391–394

DOI PMID

48
Zou J, Maeder M L, Mali P, Pruett-Miller S M, Thibodeau-Beganny S, Chou B K, Chen G, Ye Z, Park I H, Daley G Q, Porteus M H, Joung J K, Cheng L (2009). Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell, 5(1): 97–110

DOI PMID

49
Zou J, Mali P, Huang X, Dowey S N, Cheng L (2011). Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood, 118(17): 4599–4608

DOI PMID

Outlines

/