Development and utilization of new sequenced characterized amplified region markers specific for E genome of Thinopyrum
Received date: 17 Oct 2012
Accepted date: 19 Jun 2013
Published date: 01 Aug 2013
Copyright
Species containing E genome of Thinopyrum offered potential to increase the genetic variability and desirable characters for wheat improvement. However, E genome specific marker was rare. The objective of the present report was to develop and identify sequenced characterized amplified region (SCAR) markers that can be used in detecting E chromosome in wheat background for breeding purpose. Total 280 random amplified polymorphic DNA (RAPD) primers were amplified for seeking of E genome specific fragments by using the genomic DNA of Thinopyrum elongatum and wheat controls as templates. As a result, six RAPD fragments specific for E genome were found and cloned, and then were converted to SCAR markers. The usability of these markers was validated using a number of E-genome-containing species and wheat as controls. These markers were subsequently located on E chromosomes using specific PCR and fluorescence in situ hybridization (FISH). SCAR markers developed in this research could be used in molecular marker assisted selection of wheat breeding with Thinopyrum chromatin introgressions.
Key words: Thinopyrum; Trititrigia; E genome; SCAR markers; FISH
Wenping GONG , Ling RAN , Guangrong LI , Jianping ZHOU , Cheng LIU , Zujun YANG . Development and utilization of new sequenced characterized amplified region markers specific for E genome of Thinopyrum[J]. Frontiers in Biology, 2013 , 8(4) : 451 -459 . DOI: 10.1007/s11515-013-1268-9
1 |
Brosius J (1991). Retroposons—seeds of evolution. Science, 251(4995): 753
|
2 |
Chen G Y, Dong P, Wei Y M, He K, Li W, Zheng Y L (2007). Development of Ee-chromosome-specific RGAP markers for Lophopyrum elongatum (Host) A. Love in wheat background by using resistance gene analog polymorphism. Acta Agron Sin, 33: 1782-1787
|
3 |
Chen Q (2005). Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe—a landmark approach for Thinopyrum genome research. Cytogenet Genome Res, 109(1-3): 350-359
|
4 |
Colmer T D, Flowers T J, Munns R (2006). Use of wild relatives to improve salt tolerance in wheat. J Exp Bot, 57(5): 1059-1078
|
5 |
Dewey D R (1984). The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae, in Gustafson JP (ed): Gene Manipulation in Plant Improvement. 16:209-279 (Plenum Press, New York)
|
6 |
Flavell R B, Bennett M D, Smith J B, Smith D B (1974). Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet, 12(4): 257-269
|
7 |
Friebe B, Jiang J, Knott D R, Gill B S (1994). Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci, 34(2): 400-404
|
8 |
Friebe B, Jiang J, Raupp W J, McIntosh R A, Gill B S (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica, 91(1): 59-87
|
9 |
Fu S L, Lv Z L, Qi B, Guo X, Li J, Liu B, Han F P (2012). Molecular cytogenetic characterization of wheat—Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight. J Genet Genomics, 39(2): 103-110
|
10 |
Han F P, Fedak G (2003). Molecular characterization of partial amphiploids from Triticum durum × tetraploid Thinopyrum elongatum as novel sources of resistance to wheat Fusarium head blight. In: N.E. Pogna, M. Romano, E.A. Pogna, & G. Galterio(Eds.), Proc 10th Int Wheat Genet Symp III. Istituto Sperimentale per la Cerealicoltura, Rome, Italy, 1148-1150
|
11 |
He Z H, Xia X C, Luo J, Xin Z Y, Kong X Y, Jing R L, Wu Z L, Li X P (2006). Trend analysis of international wheat breeding. Journal of Triticeae Crops, 26: 154-156
|
12 |
Hu L J, Zeng Z X, Liu C, Yang Z J, Ren Z L (2008). Production and application of ISSR marker for St genome. Journal of Sichuan University, 45: 143-149
|
13 |
Jia J Q, Yang Z J, Li G R, Liu C, Lei M P, Zhang T, Zhou J P, Ren Z L (2009). Isolation and chromosomal distribution of a Ty1-copia like sequences from Secale allows to identify the wheat-Secale africanum introgression lines. J Appl Genet, 50: 25-28
|
14 |
Ko J M, Do G S, Suh D Y, Seo B B, Shin D C, Moon H P (2002). Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome, 45(1): 157-164
|
15 |
Li X M, Lee B S, Mammadov A C, Koo B C, Mott I W, Wang R R C (2007). CAPS markers specific to Eb, Ee, and R genomes in the tribe Triticeae. Genome, 50(4): 400-411
|
16 |
Li Z S, Rong S, Zhong G C, Chen S Y, Mu S M (1985). Wheat wide cross. Beijing: Science Press, 52-83
|
17 |
Liu C, Li G R, Yang Z J, Feng J, Zhou J P, Ren Z L (2006). Isolation and application of specific DNA segments of rye genome. Acta Botanica Boreali-Occidentalia Sinica, 26: 2434-2438
|
18 |
Liu C, Yang Z J, Jia J Q, Li G R, Zhou J P, Ren Z L (2009). Genomic distribution of a Long Terminal Repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Res Commun, 37(3): 363-372
|
19 |
Liu C, Yang Z J, Li G R, Zeng Z X, Zhang Y, Zhou J P, Liu Z H, Ren Z L (2008). Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica, 159(1-2): 249-258
|
20 |
Liu C, Yang Z J, Liu C, Li G R, Ren Z L (2007). Analysis of St-chromosome-containing triticeae polyploids using specific molecular markers. Yi Chuan, 29(10): 1271-1279
|
21 |
Liu S B, Jia J Z, Wang H G, Kong L R, Zhou R H (1998). Special chromosome markers for E genome and DNA polymorphism between Agropyron elongatum (2n=14) and common wheat detected by RAPD marker. Acta Agron Sin, 24: 687-690
|
22 |
Liu Z W, Biyashev R M, Saghai M M (1996). Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet, 93(93): 869-876
|
23 |
Ma J X, Zhou R H, Dong Y S, Jia J Z (2000). Control and inheritance of resistance to yellow rust in Triticum aestivum-Lophopyrum elongatum chromosome substitution lines. Euphytica, 111(1): 57-60
|
24 |
McDonald M P, Galwey N W, Ellneskog-Staam P, Colmer T D (2001). Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytol, 151(2): 369-380
|
25 |
McGuire G E, Dvorak J (1981). High salt tolerance potential in wheatgrasses. Crop Sci, 21(5): 702-705
|
26 |
Mukai Y, Nakahara Y, Yamamoto M (1993). Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 36(3): 489-494
|
27 |
Sharma D, Knott D R (1966). The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol, 8: 137-143
|
28 |
Sharma H C, Ohm H, Lister R, Foster J E, Shukle R H (1989). Response of wheatgrasses and wheat × wheatgrass hybrids to barley yellow dwarf virus. Theor Appl Genet, 77(3): 369-374
|
29 |
Shen X R, Kong L R, Ohm H (2004). Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet, 108(5): 808-813
|
30 |
Shukle R H, Lampe D J, Lister R M, Foster J E (1987). Aphid feeding behavior: relationship to barley yellow dwarf virus resistance in Agropyron species. Phytopathology, 77(5): 725-729
|
31 |
Sun S C (1981). The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin, 7: 51-58
|
32 |
Taeb M, Koebner R M D, Forster B P (1993). Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome, 36(5): 825-830
|
33 |
Wang R R C, Zhang X Y (1989). Geneome relationship between Thinopyrum bessarabicum and Th. elongatum: revisited. Genome, 32(5): 802-809
|
34 |
Xu G H, Su W Y, Shu Y J, Cong W W, Wu L, Guo C H (2012). RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the Thinopyrum elongatum E (Poaceae) genome. Genet Mol Res, 11(2): 1741-1751
|
35 |
Yang Z J, Li G R, Chang Z J, Zhou J P, Ren Z L (2006a). Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica, 149(1-2): 11-17
|
36 |
Yang Z J, Liu C, Feng J, Li G R, Zhou J P, Deng K J, Ren Z L (2006b). Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas, 143(2006): 47-54
|
37 |
Yang Z J, Ren Z L (2001). Chromosomal distribution and genetic expression of Lophopyrum elongatum (Host) A. Love genes for adult plant resistance to stripe rust in wheat background. Genet Resour Crop Evol, 48(2): 183-187
|
38 |
You M S, Li B Y, Tang Z H, Liu S B, Liu G T (2003). Development of specific SSR markers for Ee-genome of Thinopyrum ssp. by using wheat microsatellites. J Agric Biotechnol, 11: 577-581
|
39 |
You M S, Li B Y, Tang Z H, Liu S B, Song J M, Mao S F, Liu G T (2002). Establishment of E-genome-specific RAPD and SCAR markers for Thinopyrum ssp. Journal of China Agricultural University, 7: 1-6
|
40 |
Zhang W J, Lukaszewski A J, Kolmer J, Soria M A, Goyal S, Dubcovsky J (2005). Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet, 111(3): 573-582
|
/
〈 | 〉 |