Neural plasticity in high-level visual cortex underlying object perceptual learning
Received date: 25 Feb 2013
Accepted date: 26 Mar 2013
Published date: 01 Aug 2013
Copyright
With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks. This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area. Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience can strongly shape neural functions of these areas. At the end of the review, we discuss several important future directions in this area.
Taiyong BI , Fang FANG . Neural plasticity in high-level visual cortex underlying object perceptual learning[J]. Frontiers in Biology, 2013 , 8(4) : 434 -443 . DOI: 10.1007/s11515-013-1262-2
1 |
Andrews T J, Ewbank M P (2004). Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage, 23(3): 905-913
|
2 |
Anstis S (2010). Stuart Anstis. Curr Biol, 20(18): R795-R796
|
3 |
Baker C I, Behrmann M, Olson C R (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci, 5(11): 1210-1216
|
4 |
Baker C I, Liu J, Wald L L, Kwong K K, Benner T, Kanwisher N (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci USA, 104(21): 9087-9092
|
5 |
Ball K, Sekuler R (1987). Direction-specific improvement in motion discrimination. Vision Res, 27(6): 953-965
|
6 |
Bao M, Yang L, Rios C, He B, Engel S A (2010). Perceptual learning increases the strength of the earliest signals in visual cortex. J Neurosci, 30(45): 15080-15084
|
7 |
Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996). Electrophysiological studies of face perception in humans. J Cogn Neurosci, 8(6): 551-565
|
8 |
Bi T, Chen N, Weng Q, He D, Fang F (2010). Learning to discriminate face views. J Neurophysiol, 104(6): 3305-3311
|
9 |
Blakemore C, Campbell F W (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol, 203(1): 237-260
|
10 |
Cox D D, DiCarlo J J (2008). Does learned shape selectivity in inferior temporal cortex automatically generalize across retinal position? J Neurosci, 28(40): 10045-10055
|
11 |
De Baene W, Ons B, Wagemans J, Vogels R (2008). Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem, 15(9): 717-727
|
12 |
De Souza W C, Eifuku S, Tamura R, Nishijo H, Ono T (2005). Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. J Neurophysiol, 94(2): 1252-1266
|
13 |
Desimone R, Albright T D, Gross C G, Bruce C (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci, 4(8): 2051-2062
|
14 |
Dosher B A, Lu Z L (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc Natl Acad Sci USA, 95(23): 13988-13993
|
15 |
Dosher B A, Lu Z L (2005). Perceptual learning in clear displays optimizes perceptual expertise: learning the limiting process. Proc Natl Acad Sci USA, 102(14): 5286-5290
|
16 |
Engvig A, Fjell A M, Westlye L T, Moberget T, Sundseth O, Larsen V A, Walhovd K B (2010). Effects of memory training on cortical thickness in the elderly. Neuroimage, 52(4): 1667-1676
|
17 |
Fang F, Murray S O, He S (2007). Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex. Cereb Cortex, 17(6): 1402-1411
|
18 |
Fang F, Murray S O, Kersten D, He S (2005). Orientation-tuned FMRI adaptation in human visual cortex. J Neurophysiol, 94(6): 4188-4195
|
19 |
Folstein J R, Palmeri T J, Gauthier I (2012). Category learning increases discriminability of relevant object dimensions in visual cortex. Cereb Cortex
|
20 |
Freedman D J, Riesenhuber M, Poggio T, Miller E K (2006). Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex, 16(11): 1631-1644
|
21 |
Furmanski C S, Engel S A (2000). Perceptual learning in object recognition: object specificity and size invariance. Vision Res, 40(5): 473-484
|
22 |
Furmanski C S, Schluppeck D, Engel S A (2004). Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol, 14(7): 573-578
|
23 |
Gauthier I, Skudlarski P, Gore J C, Anderson A W (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci, 3(2): 191-197
|
24 |
Gauthier I, Tarr M J (1997). Becoming a “Greeble” expert: exploring mechanisms for face recognition. Vision Res, 37(12): 1673-1682
|
25 |
Gilbert C D, Sigman M, Crist R E (2001). The neural basis of perceptual learning. Neuron, 31(5): 681-697
|
26 |
Gillebert C R, Op de Beeck H P, Panis S, Wagemans J (2009). Subordinate categorization enhances the neural selectivity in human object-selective cortex for fine shape differences. J Cogn Neurosci, 21(6): 1054-1064
|
27 |
Gold J, Bennett P J, Sekuler A B (1999). Signal but not noise changes with perceptual learning. Nature, 402(6758): 176-178
|
28 |
Goldstone R L, Lippa Y, Shiffrin R M (2001). Altering object representations through category learning. Cognition, 78(1): 27-43
|
29 |
Grill-Spector K, Henson R, Martin A (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci, 10(1): 14-23
|
30 |
Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24(1): 187-203
|
31 |
Grill-Spector K, Kushnir T, Hendler T, Malach R (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci, 3(8): 837-843
|
32 |
Grill-Spector K, Malach R (2001). fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst), 107(1-3): 293-321
|
33 |
Gross C G (1992). Representation of visual stimuli in inferior temporal cortex. Philos Trans R Soc Lond Ser B-Biol Sci, 335: 3-10
|
34 |
Harley E M, Pope W B, Villablanca J P, Mumford J, Suh R, Mazziotta J C, Enzmann D, Engel S A (2009). Engagement of fusiform cortex and disengagement of lateral occipital cortex in the acquisition of radiological expertise. Cereb Cortex, 19(11): 2746-2754
|
35 |
Hubel D H, Wiesel T N (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol, 206(2): 419-436
|
36 |
Hussain Z, Sekuler A B, Bennett P J (2008). Robust perceptual learning of faces in the absence of sleep. Vision Res, 48(28): 2785-2792
|
37 |
Jeffreys D A (1996). Evoked potential studies of face and object processing. Vis Cogn, 3(1): 1-38
|
38 |
Jiang X, Bradley E, Rini R A, Zeffiro T, Vanmeter J, Riesenhuber M (2007). Categorization training results in shape- and category-selective human neural plasticity. Neuron, 53(6): 891-903
|
39 |
Kaas J H, Krubitzer L A, Chino Y M, Langston A L, Polley E H, Blair N (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 248(4952): 229-231
|
40 |
Kahnt T, Grueschow M, Speck O, Haynes J D (2011). Perceptual learning and decision-making in human medial frontal cortex. Neuron, 70(3): 549-559
|
41 |
Karni A, Sagi D (1993). The time course of learning a visual skill. Nature, 365(6443): 250-252
|
42 |
Law C T, Gold J I (2008). Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat Neurosci, 11(4): 505-513
|
43 |
Ma L S, Wang B Q, Narayana S, Hazeltine E, Chen X Y, Robin D A, Fox P T, Xiong J H (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Res, 1318: 64-76
|
44 |
Mollon J D, Danilova M V (1996). Three remarks on perceptual learning. Spat Vis, 10(1): 51-58
|
45 |
Moore C D, Cohen M X, Ranganath C (2006). Neural mechanisms of expert skills in visual working memory. J Neurosci, 26(43): 11187-11196
|
46 |
Mukai I, Kim D, Fukunaga M, Japee S, Marrett S, Ungerleider L G (2007). Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J Neurosci, 27(42): 11401-11411
|
47 |
Op de Beeck H, Wagemans J, Vogels R (2003). The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. J Exp Psychol Gen, 132(4): 491-511
|
48 |
Op de Beeck H P, Wagemans J, Vogels R (2007). Effects of perceptual learning in visual backward masking on the responses of macaque inferior temporal neurons. Neuroscience, 145(2): 775-789
|
49 |
Peissig J J, Singer J, Kawasaki K, Sheinberg D L (2007). Effects of long-term object familiarity on event-related potentials in the monkey. Cereb Cortex, 17(6): 1323-1334
|
50 |
Perrett D I, Smith P A J, Potter D D, Mistlin A J, Head A S, Milner A D, Jeeves M A(1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. P Roy Soc B-Biol Sci, 223: 293-317
|
51 |
Rainer G, Lee H, Logothetis N K (2004). The effects of learning on the function of monkey extrastriate visual cortex. PLoS Biol, 2(2): 275-283
|
52 |
Rossion B, Gauthier I, Goffaux V, Tarr M J, Crommelinck M (2002). Expertise training with novel objects leads to left-lateralized facelike electrophysiological responses. Psychol Sci, 13(3): 250-257
|
53 |
Sakai K, Miyashita Y (1994). Neuronal tuning to learned complex forms in vision. Neuroreport, 5(7): 829-832
|
54 |
Scholz J, Klein M C, Behrens T E J, Johansen-Berg H (2009). Training induces changes in white-matter architecture. Nat Neurosci, 12(11): 1370-1371
|
55 |
Schoups A, Vogels R, Qian N, Orban G (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature, 412(6846): 549-553
|
56 |
Schoups A A, Vogels R, Orban G A (1995). Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol, 483(Pt 3): 797-810
|
57 |
Schwartz S, Maquet P, Frith C (2002). Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA, 99(26): 17137-17142
|
58 |
Scott L S, Tanaka J W, Sheinberg D L, Curran T (2008). The role of category learning in the acquisition and retention of perceptual expertise: a behavioral and neurophysiological study. Brain Res, 1210: 204-215
|
59 |
Sigala N, Logothetis N K (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415(6869): 318-320
|
60 |
Sigman M, Gilbert C D (2000). Learning to find a shape. Nat Neurosci, 3(3): 264-269
|
61 |
Sigman M, Pan H, Yang Y H, Stern E, Silbersweig D, Gilbert C D (2005). Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron, 46(5): 823-835
|
62 |
Song Y Y, Hu S Y, Li X T, Li W, Liu J (2010). The role of top-down task context in learning to perceive objects. J Neurosci, 30(29): 9869-9876
|
63 |
Su J Z, Chen C, He D J, Fang F (2012). Effects of face view discrimination learning on N170 latency and amplitude. Vision Res, 61: 125-131
|
64 |
van der Linden M, Murre J M J, van Turennout M (2008). Birds of a feather flock together: experience-driven formation of visual object categories in human ventral temporal cortex. PLoS ONE, 3(12): e3995
|
65 |
Woloszyn L, Sheinberg D L (2012). Effects of long-term visual experience on responses of distinct classes of single units in inferior temporal cortex. Neuron, 74(1): 193-205
|
66 |
Wong Y K, Folstein J R, Gauthier I (2012). The nature of experience determines object representations in the visual system. J Exp Psychol Gen, 141(4): 682-698
|
67 |
Xiao L Q, Zhang J Y, Wang R, Klein S A, Levi D M, Yu C (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Curr Biol, 18(24): 1922-1926
|
68 |
Xu Y D (2005). Revisiting the role of the fusiform face area in visual expertise. Cereb Cortex, 15(8): 1234-1242
|
69 |
Yotsumoto Y, Watanabe T, Sasaki Y (2008). Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron, 57(6): 827-833
|
70 |
Yu C, Klein S A, Levi D M (2004). Perceptual learning in contrast discrimination and the (minimal) role of context. J Vis, 4(3): 169-182
|
71 |
Zatorre R J, Fields R D, Johansen-Berg H (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci, 15(4): 528-536
|
/
〈 | 〉 |