REVIEW

Neural plasticity in high-level visual cortex underlying object perceptual learning

  • Taiyong BI , 1 ,
  • Fang FANG 1,2,3
Expand
  • 1. Department of Psychology and Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China
  • 2. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
  • 3. PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China

Received date: 25 Feb 2013

Accepted date: 26 Mar 2013

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks. This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area. Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience can strongly shape neural functions of these areas. At the end of the review, we discuss several important future directions in this area.

Cite this article

Taiyong BI , Fang FANG . Neural plasticity in high-level visual cortex underlying object perceptual learning[J]. Frontiers in Biology, 2013 , 8(4) : 434 -443 . DOI: 10.1007/s11515-013-1262-2

1
Andrews T J, Ewbank M P (2004). Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage, 23(3): 905-913

DOI PMID

2
Anstis S (2010). Stuart Anstis. Curr Biol, 20(18): R795-R796

DOI PMID

3
Baker C I, Behrmann M, Olson C R (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci, 5(11): 1210-1216

DOI PMID

4
Baker C I, Liu J, Wald L L, Kwong K K, Benner T, Kanwisher N (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci USA, 104(21): 9087-9092

DOI PMID

5
Ball K, Sekuler R (1987). Direction-specific improvement in motion discrimination. Vision Res, 27(6): 953-965

DOI PMID

6
Bao M, Yang L, Rios C, He B, Engel S A (2010). Perceptual learning increases the strength of the earliest signals in visual cortex. J Neurosci, 30(45): 15080-15084

DOI PMID

7
Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996). Electrophysiological studies of face perception in humans. J Cogn Neurosci, 8(6): 551-565

DOI PMID

8
Bi T, Chen N, Weng Q, He D, Fang F (2010). Learning to discriminate face views. J Neurophysiol, 104(6): 3305-3311

DOI PMID

9
Blakemore C, Campbell F W (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol, 203(1): 237-260

PMID

10
Cox D D, DiCarlo J J (2008). Does learned shape selectivity in inferior temporal cortex automatically generalize across retinal position? J Neurosci, 28(40): 10045-10055

DOI PMID

11
De Baene W, Ons B, Wagemans J, Vogels R (2008). Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem, 15(9): 717-727

DOI PMID

12
De Souza W C, Eifuku S, Tamura R, Nishijo H, Ono T (2005). Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. J Neurophysiol, 94(2): 1252-1266

DOI PMID

13
Desimone R, Albright T D, Gross C G, Bruce C (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci, 4(8): 2051-2062

PMID

14
Dosher B A, Lu Z L (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc Natl Acad Sci USA, 95(23): 13988-13993

DOI PMID

15
Dosher B A, Lu Z L (2005). Perceptual learning in clear displays optimizes perceptual expertise: learning the limiting process. Proc Natl Acad Sci USA, 102(14): 5286-5290

DOI PMID

16
Engvig A, Fjell A M, Westlye L T, Moberget T, Sundseth O, Larsen V A, Walhovd K B (2010). Effects of memory training on cortical thickness in the elderly. Neuroimage, 52(4): 1667-1676

DOI PMID

17
Fang F, Murray S O, He S (2007). Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex. Cereb Cortex, 17(6): 1402-1411

DOI PMID

18
Fang F, Murray S O, Kersten D, He S (2005). Orientation-tuned FMRI adaptation in human visual cortex. J Neurophysiol, 94(6): 4188-4195

DOI PMID

19
Folstein J R, Palmeri T J, Gauthier I (2012). Category learning increases discriminability of relevant object dimensions in visual cortex. Cereb Cortex

PMID

20
Freedman D J, Riesenhuber M, Poggio T, Miller E K (2006). Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex, 16(11): 1631-1644

DOI PMID

21
Furmanski C S, Engel S A (2000). Perceptual learning in object recognition: object specificity and size invariance. Vision Res, 40(5): 473-484

DOI PMID

22
Furmanski C S, Schluppeck D, Engel S A (2004). Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol, 14(7): 573-578

DOI PMID

23
Gauthier I, Skudlarski P, Gore J C, Anderson A W (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci, 3(2): 191-197

DOI PMID

24
Gauthier I, Tarr M J (1997). Becoming a “Greeble” expert: exploring mechanisms for face recognition. Vision Res, 37(12): 1673-1682

DOI PMID

25
Gilbert C D, Sigman M, Crist R E (2001). The neural basis of perceptual learning. Neuron, 31(5): 681-697

DOI PMID

26
Gillebert C R, Op de Beeck H P, Panis S, Wagemans J (2009). Subordinate categorization enhances the neural selectivity in human object-selective cortex for fine shape differences. J Cogn Neurosci, 21(6): 1054-1064

DOI PMID

27
Gold J, Bennett P J, Sekuler A B (1999). Signal but not noise changes with perceptual learning. Nature, 402(6758): 176-178

DOI PMID

28
Goldstone R L, Lippa Y, Shiffrin R M (2001). Altering object representations through category learning. Cognition, 78(1): 27-43

DOI PMID

29
Grill-Spector K, Henson R, Martin A (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci, 10(1): 14-23

DOI PMID

30
Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24(1): 187-203

DOI PMID

31
Grill-Spector K, Kushnir T, Hendler T, Malach R (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci, 3(8): 837-843

DOI PMID

32
Grill-Spector K, Malach R (2001). fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst), 107(1-3): 293-321

DOI PMID

33
Gross C G (1992). Representation of visual stimuli in inferior temporal cortex. Philos Trans R Soc Lond Ser B-Biol Sci, 335: 3-10

34
Harley E M, Pope W B, Villablanca J P, Mumford J, Suh R, Mazziotta J C, Enzmann D, Engel S A (2009). Engagement of fusiform cortex and disengagement of lateral occipital cortex in the acquisition of radiological expertise. Cereb Cortex, 19(11): 2746-2754

DOI PMID

35
Hubel D H, Wiesel T N (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol, 206(2): 419-436

PMID

36
Hussain Z, Sekuler A B, Bennett P J (2008). Robust perceptual learning of faces in the absence of sleep. Vision Res, 48(28): 2785-2792

DOI PMID

37
Jeffreys D A (1996). Evoked potential studies of face and object processing. Vis Cogn, 3(1): 1-38

DOI

38
Jiang X, Bradley E, Rini R A, Zeffiro T, Vanmeter J, Riesenhuber M (2007). Categorization training results in shape- and category-selective human neural plasticity. Neuron, 53(6): 891-903

DOI PMID

39
Kaas J H, Krubitzer L A, Chino Y M, Langston A L, Polley E H, Blair N (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 248(4952): 229-231

DOI PMID

40
Kahnt T, Grueschow M, Speck O, Haynes J D (2011). Perceptual learning and decision-making in human medial frontal cortex. Neuron, 70(3): 549-559

DOI PMID

41
Karni A, Sagi D (1993). The time course of learning a visual skill. Nature, 365(6443): 250-252

DOI PMID

42
Law C T, Gold J I (2008). Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat Neurosci, 11(4): 505-513

DOI PMID

43
Ma L S, Wang B Q, Narayana S, Hazeltine E, Chen X Y, Robin D A, Fox P T, Xiong J H (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Res, 1318: 64-76

DOI PMID

44
Mollon J D, Danilova M V (1996). Three remarks on perceptual learning. Spat Vis, 10(1): 51-58

DOI PMID

45
Moore C D, Cohen M X, Ranganath C (2006). Neural mechanisms of expert skills in visual working memory. J Neurosci, 26(43): 11187-11196

DOI PMID

46
Mukai I, Kim D, Fukunaga M, Japee S, Marrett S, Ungerleider L G (2007). Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J Neurosci, 27(42): 11401-11411

DOI PMID

47
Op de Beeck H, Wagemans J, Vogels R (2003). The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. J Exp Psychol Gen, 132(4): 491-511

DOI PMID

48
Op de Beeck H P, Wagemans J, Vogels R (2007). Effects of perceptual learning in visual backward masking on the responses of macaque inferior temporal neurons. Neuroscience, 145(2): 775-789

DOI PMID

49
Peissig J J, Singer J, Kawasaki K, Sheinberg D L (2007). Effects of long-term object familiarity on event-related potentials in the monkey. Cereb Cortex, 17(6): 1323-1334

DOI PMID

50
Perrett D I, Smith P A J, Potter D D, Mistlin A J, Head A S, Milner A D, Jeeves M A(1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. P Roy Soc B-Biol Sci, 223: 293-317

51
Rainer G, Lee H, Logothetis N K (2004). The effects of learning on the function of monkey extrastriate visual cortex. PLoS Biol, 2(2): 275-283

DOI

52
Rossion B, Gauthier I, Goffaux V, Tarr M J, Crommelinck M (2002). Expertise training with novel objects leads to left-lateralized facelike electrophysiological responses. Psychol Sci, 13(3): 250-257

DOI PMID

53
Sakai K, Miyashita Y (1994). Neuronal tuning to learned complex forms in vision. Neuroreport, 5(7): 829-832

DOI PMID

54
Scholz J, Klein M C, Behrens T E J, Johansen-Berg H (2009). Training induces changes in white-matter architecture. Nat Neurosci, 12(11): 1370-1371

DOI PMID

55
Schoups A, Vogels R, Qian N, Orban G (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature, 412(6846): 549-553

DOI PMID

56
Schoups A A, Vogels R, Orban G A (1995). Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol, 483(Pt 3): 797-810

PMID

57
Schwartz S, Maquet P, Frith C (2002). Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA, 99(26): 17137-17142

DOI PMID

58
Scott L S, Tanaka J W, Sheinberg D L, Curran T (2008). The role of category learning in the acquisition and retention of perceptual expertise: a behavioral and neurophysiological study. Brain Res, 1210: 204-215

DOI PMID

59
Sigala N, Logothetis N K (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415(6869): 318-320

DOI PMID

60
Sigman M, Gilbert C D (2000). Learning to find a shape. Nat Neurosci, 3(3): 264-269

DOI PMID

61
Sigman M, Pan H, Yang Y H, Stern E, Silbersweig D, Gilbert C D (2005). Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron, 46(5): 823-835

DOI PMID

62
Song Y Y, Hu S Y, Li X T, Li W, Liu J (2010). The role of top-down task context in learning to perceive objects. J Neurosci, 30(29): 9869-9876

DOI PMID

63
Su J Z, Chen C, He D J, Fang F (2012). Effects of face view discrimination learning on N170 latency and amplitude. Vision Res, 61: 125-131

DOI PMID

64
van der Linden M, Murre J M J, van Turennout M (2008). Birds of a feather flock together: experience-driven formation of visual object categories in human ventral temporal cortex. PLoS ONE, 3(12): e3995

DOI PMID

65
Woloszyn L, Sheinberg D L (2012). Effects of long-term visual experience on responses of distinct classes of single units in inferior temporal cortex. Neuron, 74(1): 193-205

DOI PMID

66
Wong Y K, Folstein J R, Gauthier I (2012). The nature of experience determines object representations in the visual system. J Exp Psychol Gen, 141(4): 682-698

DOI PMID

67
Xiao L Q, Zhang J Y, Wang R, Klein S A, Levi D M, Yu C (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Curr Biol, 18(24): 1922-1926

DOI PMID

68
Xu Y D (2005). Revisiting the role of the fusiform face area in visual expertise. Cereb Cortex, 15(8): 1234-1242

DOI PMID

69
Yotsumoto Y, Watanabe T, Sasaki Y (2008). Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron, 57(6): 827-833

DOI PMID

70
Yu C, Klein S A, Levi D M (2004). Perceptual learning in contrast discrimination and the (minimal) role of context. J Vis, 4(3): 169-182

DOI PMID

71
Zatorre R J, Fields R D, Johansen-Berg H (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci, 15(4): 528-536

DOI PMID

Outlines

/