REVIEW

PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries

  • Chandler L. WALKER 1,2,3,4 ,
  • Nai-Kui LIU 1,3,4 ,
  • Xiao-Ming XU , 1,2,3,4
Expand
  • 1. Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
  • 2. Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
  • 3. Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
  • 4. Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Received date: 27 Dec 2012

Accepted date: 22 Jan 2013

Published date: 01 Aug 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Brain and spinal cord injuries initiate widespread temporal and spatial neurodegeneration, through both necrotic and programmed cell death mechanisms. Inflammation, reactive oxidation, excitotoxicity and cell-specific dysregulation of metabolic processes are instigated by traumatic insult and are main contributors to this cumulative damage. Successful treatments rely on prevention or reduction of the magnitude of disruption, and interfering with injurious cellular responses through modulation of signaling cascades is an effective approach. Two intracellular signaling pathways, the phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling cascades play various cellular roles under normal and pathological conditions. Activation of both pathways can influence anatomical and functional outcomes in multiple CNS disorders. However, some mechanisms involve inhibiting or enhancing one pathway or the other, or both, in propagating specific downstream effects. Though many intracellular mechanisms contribute to cell responses to insult, this review examines the evidence exploring PTEN/PI3K and MAPK signaling influence on pathology, neuroprotection, and repair and how these pathways may be targeted for advancing knowledge and improving neurological outcome after injury to the brain and spinal cord.

Cite this article

Chandler L. WALKER , Nai-Kui LIU , Xiao-Ming XU . PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Frontiers in Biology, 2013 , 8(4) : 421 -433 . DOI: 10.1007/s11515-013-1255-1

Acknowledgments

This work was supported by National Institutes of Health (NIH/NINDS R01 NS059622, NS050243, NS073636 to XMX, and F31 NS 071863 to CLW), the Indiana Spinal Cord and Brain Injury Research Funds, the Mari Hulman George Endowment Funds. We also appreciate the use of the Core facility of the Spinal Cord and Brain Injury Research Group/Stark Neurosciences Research Institute at Indiana University.
1
Acosta-Rua A J, Cannon R L, Yezierski R P, Vierck C J (2011). Sex differences in effects of excitotoxic spinal injury on below-level pain sensitivity. Brain Res, 1419: 85–96

DOI PMID

2
Alessandrini A, Namura S, Moskowitz M A, Bonventre J V (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA, 96(22): 12866–12869

DOI PMID

3
Alessi D R, James S R, Downes C P, Holmes A B, Gaffney P R, Reese C B, Cohen P (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol, 7(4): 261–269

DOI PMID

4
Alter B J, Zhao C, Karim F, Landreth G E, Gereau R W 4th (2010). Genetic targeting of ERK1 suggests a predominant role for ERK2 in murine pain models. J Neurosci, 30(34): 11537–11547

DOI PMID

5
Arcaro A, Wymann M P (1993). Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J, 296(Pt 2): 297–301

PMID

6
Baehrecke E H (2005). Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 6(6): 505–510

DOI PMID

7
Brewer K L, Hardin J S (2004). Neuroprotective effects of nicotinamide after experimental spinal cord injury. Acad Emerg Med, 11(2): 125–130

DOI PMID

8
Brewer K L, Yezierski R P (1998). Effects of adrenal medullary transplants on pain-related behaviors following excitotoxic spinal cord injury. Brain Res, 798(1-2): 83–92

DOI PMID

9
Cadelli D S, Schwab M E (1991). Myelin-associated inhibitors of neurite outgrowth and their role in CNS regeneration. Ann N Y Acad Sci, 633(1 Glial-Neurona): 234–240

DOI PMID

10
Cai Q Y, Chen X S, Zhong S C, Luo X, Yao Z X (2009). Differential expression of PTEN in normal adult rat brain and upregulation of PTEN and p-Akt in the ischemic cerebral cortex. Anat Rec (Hoboken), 292(4): 498–512

DOI PMID

11
Cantley L C (2002). The phosphoinositide 3-kinase pathway. Science, 296(5573): 1655–1657

DOI PMID

12
Chang L, Karin M (2001). Mammalian MAP kinase signalling cascades. Nature, 410(6824): 37–40

DOI PMID

13
Chauhan A, Sharma U, Jagannathan N R, Reeta K H, Gupta Y K (2011). Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res, 225(2): 603–609

DOI PMID

14
Chen J, Xie C, Tian L, Hong L, Wu X, Han J (2010). Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc Natl Acad Sci USA, 107(48): 20774–20779

DOI PMID

15
Chen L, Xu D, Gao Y, Cui X, Du Z, Ding Q, Wang X (2012b). Effect of donor JNK signal transduction inhibition on transplant outcome in brain dead rat model. Inflammation, 35(1): 122–129

DOI PMID

16
Chen X L, Li X Y, Qian S B, Wang Y C, Zhang P Z, Zhou X J, Wang Y X (2012a). Down-regulation of spinal D-amino acid oxidase expression blocks formalin-induced tonic pain. Biochem Biophys Res Commun, 421(3): 501–507

DOI PMID

17
Dahia P L (2000). PTEN, a unique tumor suppressor gene. Endocr Relat Cancer, 7(2): 115–129

DOI PMID

18
Dow K E, Guo M, Kisilevsky R, Riopelle R J (1993). Regenerative neurite growth modulation associated with astrocyte proteoglycans. Brain Res Bull, 30(3-4): 461–467

DOI PMID

19
Dudley D T, Pang L, Decker S J, Bridges A J, Saltiel A R (1995). A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA, 92(17): 7686–7689

DOI PMID

20
Endo H, Nito C, Kamada H, Nishi T, Chan P H (2006). Activation of the Akt/GSK3β signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab, 26(12): 1479–1489

DOI PMID

21
Engelman J A, Luo J, Cantley L C (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 7(8): 606–619

DOI PMID

22
Favata M F, Horiuchi K Y, Manos E J, Daulerio A J, Stradley D A, Feeser W S, Van Dyk D E, Pitts W J, Earl R A, Hobbs F, Copeland R A, Magolda R L, Scherle P A, Trzaskos J M (1998). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem, 273(29): 18623–18632

DOI PMID

23
Ferrer I, Friguls B, Dalfó E, Planas A M (2003). Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol, 105(5): 425–437

PMID

24
Gao Y J, Ji R R (2010). Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther, 126(1): 56–68

DOI PMID

25
Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer H R (1997). Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat Struct Biol, 4(9): 694–699

DOI PMID

26
Ghasemlou N, Lopez-Vales R, Lachance C, Thuraisingam T, Gaestel M, Radzioch D, David S (2010). Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci, 30(41): 13750–13759

DOI PMID

27
GrandPré T, Nakamura F, Vartanian T, Strittmatter S M (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature, 403(6768): 439–444

DOI PMID

28
Grishchuk Y, Ginet V, Truttmann A C, Clarke P G, Puyal J (2011). Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy, 7(10): 1115–1131

DOI PMID

29
Howitt J, Lackovic J, Low L H, Naguib A, Macintyre A, Goh C P, Callaway J K, Hammond V, Thomas T, Dixon M, Putz U, Silke J, Bartlett P, Yang B, Kumar S, Trotman L C, Tan S S (2012). Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. J Cell Biol, 196(1): 29–36

DOI PMID

30
Inoki K, Li Y, Zhu T, Wu J, Guan K L (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 4(9): 648–657

DOI PMID

31
Irving E A, Barone F C, Reith A D, Hadingham S J, Parsons A A (2000). Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res, 77(1): 65–75

DOI PMID

32
Jaeschke A, Hartkamp J, Saitoh M, Roworth W, Nobukuni T, Hodges A, Sampson J, Thomas G, Lamb R (2002). Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol, 159(2): 217–224

DOI PMID

33
Ji R R, Gereau R W 4th, Malcangio M, Strichartz G R (2009). MAP kinase and pain. Brain Res Brain Res Rev, 60(1): 135–148

DOI PMID

34
Johnson G L, Lapadat R (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600): 1911–1912

DOI PMID

35
Kau T R, Schroeder F, Ramaswamy S, Wojciechowski C L, Zhao J J, Roberts T M, Clardy J, Sellers W R, Silver P A (2003). A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell, 4(6): 463–476

DOI PMID

36
Kesherwani V, Agrawal S K (2012). Upregulation of RyR2 in hypoxic/reperfusion injury. J Neurotrauma, 29(6): 1255–1265

DOI PMID

37
Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K (2008). P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci, 28(11): 2892–2902

DOI PMID

38
Koelsch A, Feng Y, Fink D J, Mata M (2010). Transgene-mediated GDNF expression enhances synaptic connectivity and GABA transmission to improve functional outcome after spinal cord contusion. J Neurochem, 113(1): 143–152

DOI PMID

39
Krens S F, Spaink H P, Snaar-Jagalska B E (2006). Functions of the MAPK family in vertebrate-development. FEBS Lett, 580(21): 4984–4990

DOI PMID

40
Kwon C H, Zhu X, Zhang J, Knoop L L, Tharp R, Smeyne R J, Eberhart C G, Burger P C, Baker S J (2001). Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet, 29(4): 404–411

DOI PMID

41
Lee J O, Yang H, Georgescu M M, Di Cristofano A, Maehama T, Shi Y, Dixon J E, Pandolfi P, Pavletich N P (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99(3): 323–334

DOI PMID

42
Lee J Y, Chung H, Yoo Y S, Oh Y J, Oh T H, Park S, Yune T Y (2010). Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology, 151(8): 3815–3826

DOI PMID

43
Levine B, Yuan J (2005). Autophagy in cell death: an innocent convict? J Clin Invest, 115(10): 2679–2688

DOI PMID

44
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S I, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner S H, Giovanella B C, Ittmann M, Tycko B, Hibshoosh H, Wigler M H, Parsons R (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275(5308): 1943–1947

DOI PMID

45
Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, Chen J (2010a). Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem, 112(6): 1500–1512

DOI PMID

46
Liu G, Detloff M R, Miller K N, Santi L, Houlé J D (2012b). Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol, 233(1): 447–456

DOI PMID

47
Liu K, Lu Y, Lee J K, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park K K, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010b). PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci, 13(9): 1075–1081

DOI PMID

48
Liu N K, Zhang Y P, Titsworth W L, Jiang X, Han S, Lu P H, Shields C B, Xu X M (2006). A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol, 59(4): 606–619

DOI PMID

49
Liu Y, Wang H, Zhu Y, Chen L, Qu Y, Zhu Y (2012a). The protective effect of nordihydroguaiaretic acid on cerebral ischemia/reperfusion injury is mediated by the JNK pathway. Brain Res, 1445: 73–81

DOI PMID

50
Loane D J, Faden A I (2010). Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci, 31(12): 596–604

DOI PMID

51
Manning B D, Cantley L C (2007). AKT/PKB signaling: navigating downstream. Cell, 129(7): 1261–1274

DOI PMID

52
McKerracher L, David S, Jackson D L, Kottis V, Dunn R J, Braun P E (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 13(4): 805–811

DOI PMID

53
Mearow K M, Dodge M E, Rahimtula M, Yegappan C (2002). Stress-mediated signaling in PC12 cells- the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem, 83(2): 452–462

DOI PMID

54
Mielke K, Herdegen T (2000). JNK and p38 stresskinases—degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol, 61(1): 45–60

DOI PMID

55
Nakashima S, Arnold S A, Mahoney E T, Sithu S D, Zhang Y P, D’Souza S E, Shields C B, Hagg T (2008). Small-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats. J Neurosci, 28(29): 7293–7303

DOI PMID

56
National Spinal Cord Injury Statistical Center (NSCISC), University of Alabama at Birmingham (2011). Facts and figures at a glance. www.nscisc.uab.edu.

57
Noshita N, Lewén A, Sugawara T, Chan P H (2001). Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab, 21(12): 1442–1450

DOI PMID

58
Ohsawa M, Mutoh J, Yamamoto S, Ono H, Hisa H (2012). Effect of spinally administered simvastatin on the formalin-induced nociceptive response in mice. J Pharmacol Sci, 119(1): 102–106

DOI PMID

59
Park K K, Liu K, Hu Y, Smith P D, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008). Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science, 322(5903): 963–966

DOI PMID

60
Pearson L L, Castle B E, Kehry M R (2001). CD40-mediated signaling in monocytic cells: up-regulation of tumor necrosis factor receptor-associated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. Int Immunol, 13(3): 273–283

DOI PMID

61
Pouysségur J, Volmat V, Lenormand P (2002). Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol, 64(5-6): 755–763

DOI PMID

62
Proud C G (2002). Regulation of mammalian translation factors by nutrients. Eur J Biochem, 269(22): 5338–5349

DOI PMID

63
Proud C G (2004). The multifaceted role of mTOR in cellular stress responses. DNA Repair (Amst), 3(8-9): 927–934

DOI PMID

64
Roux P P, Blenis J (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 68(2): 320–344

DOI PMID

65
Rubinfeld H, Seger R (2005). The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol, 31(2): 151–174

DOI PMID

66
Saklatvala J (2004). The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol, 4(4): 372–377

DOI PMID

67
Samuels I S, Saitta S C, Landreth G E (2009). MAP’ing CNS development and cognition: an ERKsome process. Neuron, 61(2): 160–167

DOI PMID

68
Sawe N, Steinberg G, Zhao H (2008). Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res, 86(8): 1659–1669

DOI PMID

69
Schmid A C, Byrne R D, Vilar R, Woscholski R (2004). Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett, 566(1-3): 35–38

DOI PMID

70
Schwab M E, Bartholdi D (1996). Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev, 76(2): 319–370

PMID

71
Segal R A, Greenberg M E (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci, 19(1): 463–489

DOI PMID

72
Seglen P O, Gordon P B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 79(6): 1889–1892

DOI PMID

73
Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E (2012). Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma, 29(5): 946–956

DOI PMID

74
Shang J, Deguchi K, Yamashita T, Ohta Y, Zhang H, Morimoto N, Liu N, Zhang X, Tian F, Matsuura T, Funakoshi H, Nakamura T, Abe K (2010). Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J Neurosci Res, 88(10): 2197–2206

DOI PMID

75
Shi G D, OuYang Y P, Shi J G, Liu Y, Yuan W, Jia L S (2011). PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem Biophys Res Commun, 404(4): 941–945

DOI PMID

76
Shi T J, Huang P, Mulder J, Ceccatelli S, Hokfelt T (2009). Expression of p-Akt in sensory neurons and spinal cord after peripheral nerve injury. Neurosignals, 17(3): 203–212

DOI PMID

77
Sury M D, Vorlet-Fawer L, Agarinis C, Yousefi S, Grandgirard D, Leib S L, Christen S (2011). Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis. Neurobiol Dis, 41(1): 201–208

DOI PMID

78
Tee A R, Fingar D C, Manning B D, Kwiatkowski D J, Cantley L C, Blenis J (2002). Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA, 99(21): 13571–13576

DOI PMID

79
Titsworth W L, Onifer S M, Liu N K, Xu X M (2007). Focal phospholipases A2 group III injections induce cervical white matter injury and functional deficits with delayed recovery concomitant with Schwann cell remyelination. Exp Neurol, 207(1): 150–162

DOI PMID

80
Tran H T, Sanchez L, Brody D L (2012). Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol, 71(2): 116–129

DOI PMID

81
Treisman R (1996). Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol, 8(2): 205–215

DOI PMID

82
Vlahos C J, Matter W F, Hui K Y, Brown R F (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem, 269(7): 5241–5248

PMID

83
Walker C L, Liu N K, Xu X M (2012b). Bisperoxovanadium differentially affects cellular Akt and Erk activity and promotes oligodendrocyte and myelin sparing after hemi-contusive cervical spinal cord injury. J Neurotrauma, 29(10): A-30

84
Walker C L, Walker M J, Liu N K, Risberg E C, Gao X, Chen J, Xu X M (2012a). Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS ONE, 7(1): e30012

DOI PMID

85
Wang G, Barrett J W, Stanford M, Werden S J, Johnston J B, Gao X, Sun M, Cheng J Q, McFadden G(2006). Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc Natl Acad Sci U S A, 103: 4640–4645

86
Wang H Y, Crupi D, Liu J, Stucky A, Cruciata G, Di Rocco A, Friedman E, Quartarone A, Ghilardi M F (2011). Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J Neurosci, 31(30): 11044–11054

DOI PMID

87
Wang K C, Koprivica V, Kim J A, Sivasankaran R, Guo Y, Neve R L, He Z (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 417(6892): 941–944

DOI PMID

88
White A, Pargellis C A, Studts J M, Werneburg B G, Farmer B T 2nd (2007). Molecular basis of MAPK-activated protein kinase 2:p38 assembly. Proc Natl Acad Sci USA, 104(15): 6353–6358

DOI PMID

89
Wiley R G, Lemons L L, Kline R H 4th (2009). Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex responses to heat and formalin. Neuroscience, 161(1): 139–147

DOI PMID

90
Xu L, Chen S, Bergan R C (2006). MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene, 25(21): 2987–2998

DOI PMID

91
Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L (2011). Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res, 1402: 109–121

DOI PMID

92
Yang P, Dankowski A, Hagg T (2007). Protein tyrosine phosphatase inhibition reduces degeneration of dopaminergic substantia nigra neurons and projections in 6-OHDA treated adult rats. Eur J Neurosci, 25(5): 1332–1340

DOI PMID

93
Yezierski R P, Liu S, Ruenes G L, Kajander K J, Brewer K L (1998). Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain, 75(1): 141–155

DOI PMID

94
Yezierski R P, Santana M, Park S H, Madsen P W (1993). Neuronal degeneration and spinal cavitation following intraspinal injections of quisqualic acid in the rat. J Neurotrauma, 10(4): 445–456

DOI PMID

95
Yoshimura K, Ueno M, Lee S, Nakamura Y, Sato A, Yoshimura K, Kishima H, Yoshimine T, Yamashita T (2011). c-Jun N-terminal kinase induces axonal degeneration and limits motor recovery after spinal cord injury in mice. Neurosci Res, 71(3): 266–277

DOI PMID

96
Yu C G, Yezierski R P (2005b). Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res Mol Brain Res, 138(2): 244–255

DOI PMID

97
Yu C G, Yezierski R P, Joshi A, Raza K, Li Y, Geddes J W (2010). Involvement of ERK2 in traumatic spinal cord injury. J Neurochem, 113(1): 131–142

DOI PMID

98
Yu F, Narasimhan P, Saito A, Liu J, Chan P H (2008). Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab, 28(1): 44–52

DOI PMID

99
Yu F, Sugawara T, Maier C M, Hsieh L B, Chan P H (2005a). Akt/Bad signaling and motor neuron survival after spinal cord injury. Neurobiol Dis, 20(2): 491–499

DOI PMID

100
Yune T Y, Park H G, Lee J Y, Oh T H (2008). Estrogen-induced Bcl-2 expression after spinal cord injury is mediated through phosphoinositide-3-kinase/Akt-dependent CREB activation. J Neurotrauma, 25(9): 1121–1131

DOI PMID

101
Zhang L, Ma Z, Smith G M, Wen X, Pressman Y, Wood P M, Xu X M (2009). GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons. Glia, 57(11): 1178–1191

DOI PMID

102
Zhang Q G, Wu D N, Han D, Zhang G Y (2007). Critical role of PTEN in the coupling between PI3K/Akt and JNK1/2 signaling in ischemic brain injury. FEBS Lett, 581(3): 495–505

DOI PMID

103
Zhang S, Xia Y Y, Lim H C, Tang F R, Feng Z W (2010). NCAM-mediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration, and synaptogenesis. Neurochem Int, 56(8): 919–929

DOI PMID

104
Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao M, Xu H, Yang Y, Poon W, Fei Z (2012). Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol, 237(2): 489–498

DOI PMID

105
Zhao Z, Liu N, Huang J, Lu P H, Xu X M (2011). Inhibition of cPLA2 activation by Ginkgo biloba extract protects spinal cord neurons from glutamate excitotoxicity and oxidative stress-induced cell death. J Neurochem, 116(6): 1057–1065

DOI PMID

106
Zheng C, Lin Z, Zhao Z J, Yang Y, Niu H, Shen X (2006). MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. J Biol Chem, 281(48): 37215–37226

DOI PMID

107
Zhong H, Bowen J P (2011). Recent advances in small molecule inhibitors of VEGFR and EGFR signaling pathways. Curr Top Med Chem, 11(12): 1571–1590

DOI PMID

108
Zhong L M, Zong Y, Sun L, Guo J Z, Zhang W, He Y, Song R, Wang W M, Xiao C J, Lu D (2012). Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS ONE, 7(2): e32195

DOI PMID

Outlines

/