The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease
Received date: 02 Nov 2012
Accepted date: 04 Feb 2013
Published date: 01 Aug 2013
Copyright
Phosphoinositides (PIs) have long been known to have an essential role in cell physiology. Their intracellular localization and concentration must be tightly regulated for their proper function. This spatial and temporal regulation is achieved by a large number of PI kinases and phosphatases that are present throughout eukaryotic species. One family of these enzymes contains a conserved PI phosphatase domain termed Sac. Although the Sac domain is homologous among different Sac domain-containing proteins, all appear to exhibit varied substrate specificity and subcellular localization. Dysfunctions in several members of this family are implicated in a range of human diseases such as cardiac hypertrophy, bipolar disorder, Down’s syndrome, Charcot-Marie-Tooth disease (CMT) and Amyotrophic Lateral Sclerosis (ALS). In plant, several Sac domain-containing proteins have been implicated in the stress response, chloroplast function and polarized secretion. In this review, we focus on recent findings in the family of Sac domain-containing PI phosphatases in yeast, mammal and plant, including the structural analysis into the mechanism of enzymatic activity, cellular functions, and their roles in disease pathophysiology.
Key words: lipid metabolism; membrane trafficking
FoSheng HSU , Yuxin MAO . The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease[J]. Frontiers in Biology, 2013 , 8(4) : 395 -407 . DOI: 10.1007/s11515-013-1258-y
1 |
AraiY, IjuinT, TakenawaT, BeckerL E, TakashimaS (2002). Excessive expression of synaptojanin in brains with Down syndrome. Brain Dev, 24(2): 67–72
|
2 |
BankaitisV A, AitkenJ R, ClevesA E, DowhanW (1990). An essential role for a phospholipid transfer protein in yeast Golgi function. Nature, 347(6293): 561–562
|
3 |
BarfordD, DasA K, EgloffM P (1998). The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct, 27(1): 133–164
|
4 |
BegleyM J, TaylorG S, KimS A, VeineD M, DixonJ E, StuckeyJ A (2003). Crystal structure of a phosphoinositide phosphatase, MTMR2: insights into myotubular myopathy and Charcot-Marie-Tooth syndrome. Mol Cell, 12(6): 1391–1402
|
5 |
BlagoveshchenskayaA, CheongF Y, RohdeH M, GloverG, KnödlerA, NicolsonT, BoehmeltG, MayingerP (2008). Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J Cell Biol, 180(4): 803–812
|
6 |
BlagoveshchenskayaA, MayingerP (2009). SAC1 lipid phosphatase and growth control of the secretory pathway. Mol Biosyst, 5(1): 36–42
|
7 |
BriceS E, AlfordC W, CowartL A (2009). Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. J Biol Chem, 284(12): 7588–7596
|
8 |
ChangK T, MinK T (2009). Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for Down syndrome. Proc Natl Acad Sci USA, 106(40): 17117–17122
|
9 |
Chang-IletoB, FrereS G, ChanR B, VoronovS V, RouxA, Di PaoloG (2011). Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell, 20(2): 206–218
|
10 |
CheongF Y, SharmaV, BlagoveshchenskayaA, OorschotV M, BrankatschkB, KlumpermanJ, FreezeH H, MayingerP (2010). Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic, 11(9): 1180–1190
|
11 |
ChowC Y, LandersJ E, BergrenS K, SappP C, GrantA E, JonesJ M, EverettL, LenkG M, McKenna-YasekD M, WeismanL S, FiglewiczD, BrownR H, MeislerM H (2009). Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet, 84(1): 85–88
|
12 |
ChowC Y, ZhangY, DowlingJ J, JinN, AdamskaM, ShigaK, SzigetiK, ShyM E, LiJ, ZhangX, LupskiJ R, WeismanL S, MeislerM H (2007). Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature, 448(7149): 68–72
|
13 |
ChuangY Y, TranN L, RuskN, NakadaM, BerensM E, SymonsM (2004). Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res, 64(22): 8271–8275
|
14 |
CossecJ C, LavaurJ, BermanD E, RivalsI, HoischenA, StoraS, RipollC, MircherC, GrattauY, OlivomarinJ C, de ChaumontF, LecourtoisM, AntonarakisS E, VeltmanJ A, DelabarJ M, DuyckaertsC, Di PaoloG, PotierM C (2012). Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet, 21(14): 3156–3172
|
15 |
CremonaO, Di PaoloG, WenkM R, LüthiA, KimW T, TakeiK, DaniellL, NemotoY, ShearsS B, FlavellR A, McCormickD A, De CamilliP (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell, 99(2): 179–188
|
16 |
CullenP J, CozierG E, BantingG, MellorH (2001). Modular phosphoinositide-binding domains-their role in signalling and membrane trafficking. Current Biol, CB 11: R882–893
|
17 |
De MatteisM A, GodiA (2004). PI-loting membrane traffic. Nat Cell Biol, 6(6): 487–492
|
18 |
DeWaldD B, TorabinejadJ, JonesC A, ShopeJ C, CangelosiA R, ThompsonJ E, PrestwichG D, HamaH (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol, 126(2): 759–769
|
19 |
Di PaoloG, De CamilliP (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112): 651–657
|
20 |
DieckC B, BossW F, PereraI Y (2012). A role for phosphoinositides in regulating plant nuclear functions. Front Plant Sci, 3: 50
|
21 |
DuexJ E, NauJ J, KauffmanE J, WeismanL S (2006a). Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell, 5(4): 723–731
|
22 |
DuexJ E, TangF, WeismanL S (2006b). The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol, 172(5): 693–704
|
23 |
ErdmanS, LinL, MalczynskiM, SnyderM (1998). Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol, 140(3): 461–483
|
24 |
FaulhammerF, KonradG, BrankatschkB, TahirovicS, KnödlerA, MayingerP (2005). Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J Cell Biol, 168(2): 185–191
|
25 |
FergusonC J, LenkG M, JonesJ M, GrantA E, WintersJ J, DowlingJ J, GigerR J, MeislerM H (2012). Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet, 21(16): 3525–3534
|
26 |
FergusonC J, LenkG M, MeislerM H (2009). Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet, 18(24): 4868–4878
|
27 |
FotiM, AudhyaA, EmrS D (2001). Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell, 12(8): 2396–2411
|
28 |
GaryJ D, SatoT K, StefanC J, BonangelinoC J, WeismanL S, EmrS D (2002). Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell, 13(4): 1238–1251
|
29 |
GongL W, De CamilliP (2008). Regulation of postsynaptic AMPA responses by synaptojanin 1. Proc Natl Acad Sci USA, 105(45): 17561–17566
|
30 |
GuoJ, MaY H, YanQ, WangL, ZengY S, WuJ L, LiJ (2012). Fig4 expression in the rodent nervous system and its potential role in preventing abnormal lysosomal accumulation. J Neuropathol Exp Neurol, 71(1): 28–39
|
31 |
GuoS, StolzL E, LemrowS M, YorkJ D (1999). SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem, 274(19): 12990–12995
|
32 |
HaS A, TorabinejadJ, DeWaldD B, WenkM R, LucastL, De CamilliP, NewittR A, AebersoldR, NothwehrS F (2003). The synaptojanin-like protein Inp53/Sjl3 functions with clathrin in a yeast TGN-to-endosome pathway distinct from the GGA protein-dependent pathway. Mol Biol Cell, 14(4): 1319–1333
|
33 |
HaffnerC, Di PaoloG, RosenthalJ A, de CamilliP (2000). Direct interaction of the 170 kDa isoform of synaptojanin 1 with clathrin and with the clathrin adaptor AP-2. Current Biol, CB 10: 471–474
|
34 |
HamH, SreelathaA, OrthK (2011). Manipulation of host membranes by bacterial effectors. Nat Rev Microbiol, 9(9): 635–646
|
35 |
HammondG R, FischerM J, AndersonK E, HoldichJ, KoteciA, BallaT, IrvineR F (2012). PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science, 337(6095): 727–730
|
36 |
HarrisT W, HartwiegE, HorvitzH R, JorgensenE M (2000). Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol, 150(3): 589–600
|
37 |
HauckeV (2005). Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans, 33(Pt 6): 1285–1289
|
38 |
HokinL E, HokinM R (1958). Phosphoinositides and protein secretion in pancreas slices. J Biol Chem, 233(4): 805–810
|
39 |
HokinM R, HokinL E (1953). Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem, 203(2): 967–977
|
40 |
HolzhausenL C, LewisA A, CheongK K, BrockerhoffS E (2009). Differential role for synaptojanin 1 in rod and cone photoreceptors. J Comp Neurol, 517(5): 633–644
|
41 |
HughesW E, PocklingtonM J, OrrE, PaddonC J (1999). Mutations in the Saccharomyces cerevisiae gene SAC1 cause multiple drug sensitivity. Yeast, 15(11): 1111–1124
|
42 |
IkonomovO C, SbrissaD, FliggerJ, DelvecchioK, ShishevaA (2010). ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4J disorder. J Biol Chem, 285(35): 26760–26764
|
43 |
IrieF, OkunoM, PasqualeE B, YamaguchiY (2005). EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol, 7(5): 501–509
|
44 |
JeanS, KigerA A (2012). Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol, 13(7): 463–470
|
45 |
JinN, ChowC Y, LiuL, ZolovS N, BronsonR, DavissonM, PetersenJ L, ZhangY, ParkS, DuexJ E, GoldowitzD, MeislerM H, WeismanL S (2008). VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J, 27(24): 3221–3234
|
46 |
JungJ Y, KimY W, KwakJ M, HwangJ U, YoungJ, SchroederJ I, HwangI, LeeY (2002). Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell, 14(10): 2399–2412
|
47 |
KhvotchevM, SüdhofT C (1998). Developmentally regulated alternative splicing in a novel synaptojanin. J Biol Chem, 273(4): 2306–2311
|
48 |
KimD H, EuY J, YooC M, KimY W, PihK T, JinJ B, KimS J, StenmarkH, HwangI (2001). Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell, 13(2): 287–301
|
49 |
KimW T, ChangS, DaniellL, CremonaO, Di PaoloG, De CamilliP (2002). Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proc Natl Acad Sci USA, 99(26): 17143–17148
|
50 |
KochendörferK U, ThenA R, KearnsB G, BankaitisV A, MayingerP (1999). Sac1p plays a crucial role in microsomal ATP transport, which is distinct from its function in Golgi phospholipid metabolism. EMBO J, 18(6): 1506–1515
|
51 |
KohT W, VerstrekenP, BellenH J (2004). Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron, 43(2): 193–205
|
52 |
KostB, LemichezE, SpielhoferP, HongY, ToliasK, CarpenterC, ChuaN H (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol, 145(2): 317–330
|
53 |
KraussM, HauckeV (2007). Phosphoinositides: regulators of membrane traffic and protein function. FEBS Lett, 581(11): 2105–2111
|
54 |
KremerT, KempfC, WittenmayerN, NawrotzkiR, KunerT, KirschJ, DresbachT (2007). Mover is a novel vertebrate-specific presynaptic protein with differential distribution at subsets of CNS synapses. FEBS Lett, 581(24): 4727–4733
|
55 |
KrendelM, OsterweilE K, MoosekerM S (2007). Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett, 581(4): 644–650
|
56 |
LeeJ O, YangH, GeorgescuM M, Di CristofanoA, MaehamaT, ShiY, DixonJ E, PandolfiP, PavletichN P (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99(3): 323–334
|
57 |
LeeS, KimS, NahmM, KimE, KimT I, YoonJ H, LeeS (2011). The phosphoinositide phosphatase Sac1 is required for midline axon guidance. Mol Cells, 32(5): 477–482
|
58 |
LemmonM A (2003). Phosphoinositide recognition domains. Traffic, 4(4): 201–213
|
59 |
LenkG M, FergusonC J, ChowC Y, JinN, JonesJ M, GrantA E, ZolovS N, WintersJ J, GigerR J, DowlingJ J, WeismanL S, MeislerM H (2011). Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet, 7(6): e1002104
|
60 |
LichtargeO, BourneH R, CohenF E (1996). An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol, 257(2): 342–358
|
61 |
LiuY, BoukhelifaM, TribbleE, Morin-KensickiE, UetrechtA, BearJ E, BankaitisV A (2008). The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Mol Biol Cell, 19(7): 3080–3096
|
62 |
MaleczN, McCabeP C, SpaargarenC, QiuR, ChuangY, SymonsM (2000). Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Current Biol, CB 10: 1383–1386
|
63 |
ManfordA, XiaT, SaxenaA K, StefanC, HuF, EmrS D, MaoY (2010). Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J, 29(9): 1489–1498
|
64 |
ManiM, LeeS Y, LucastL, CremonaO, Di PaoloG, De CamilliP, RyanT A (2007). The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. Neuron, 56(6): 1004–1018
|
65 |
ManjiS S, WilliamsL H, MillerK A, OomsL M, BahloM, MitchellC A, DahlH H (2011). A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS ONE, 6(3): e17607
|
66 |
Martí-RenomM A, StuartA C, FiserA, SánchezR, MeloF, SaliA (2000). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct, 29(1): 291–325
|
67 |
McPhersonP S, GarciaE P, SlepnevV I, DavidC, ZhangX, GrabsD, SossinW S, BauerfeindR, NemotoY, De CamilliP (1996). A presynaptic inositol-5-phosphatase. Nature, 379(6563): 353–357
|
68 |
MinagawaT, IjuinT, MochizukiY, TakenawaT (2001). Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. J Biol Chem, 276(25): 22011–22015
|
69 |
MurphyE R, BoxbergerJ, ColvinR, LeeS J, ZahnG, LoorF, KimK (2011). Pil1, an eisosome organizer, plays an important role in the recruitment of synaptojanins and amphiphysins to facilitate receptor-mediated endocytosis in yeast. Eur J Cell Biol, 90(10): 825–833
|
70 |
NemotoY, De CamilliP (1999). Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J, 18(11): 2991–3006
|
71 |
NemotoY, KearnsB G, WenkM R, ChenH, MoriK, AlbJ G Jr, De CamilliP, BankaitisV A (2000). Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J Biol Chem, 275(44): 34293–34305
|
72 |
NemotoY, WenkM R, WatanabeM, DaniellL, MurakamiT, RingstadN, YamadaH, TakeiK, De CamilliP (2001). Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J Biol Chem, 276(44): 41133–41142
|
73 |
NicholsonG, LenkG M, ReddelS W, GrantA E, TowneC F, FergusonC J, SimpsonE, ScheuerleA, YasickM, HoffmanS, BlouinR, BrandtC, CoppolaG, BieseckerL G, BatishS D, MeislerM H (2011). Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P(2) phosphatase FIG4. Brain, 134: 1959–1971
|
74 |
NovickP, OsmondB C, BotsteinD (1989). Suppressors of yeast actin mutations. Genetics, 121(4): 659–674
|
75 |
OdorizziG, BabstM, EmrS D (2000). Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci, 25(5): 229–235
|
76 |
OsborneS L, ThomasC L, GschmeissnerS, SchiavoG (2001). Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci, 114(Pt 13): 2501–2511
|
77 |
ParkerJ A, MetzlerM, GeorgiouJ, MageM, RoderJ C, RoseA M, HaydenM R, NeriC(2007). Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci, 27: 11056–11064
|
78 |
ParrishW R, StefanC J, EmrS D (2004). Essential role for the myotubularin-related phosphatase Ymr1p and the synaptojanin-like phosphatases Sjl2p and Sjl3p in regulation of phosphatidylinositol 3-phosphate in yeast. Mol Biol Cell, 15(8): 3567–3579
|
79 |
PereraR M, ZoncuR, LucastL, De CamilliP, ToomreD (2006). Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci USA, 103(51): 19332–19337
|
80 |
PiaoH, MayingerP (2012). Growth and metabolic control of lipid signalling at the Golgi. Biochem Soc Trans, 40(1): 205–209
|
81 |
PicalC, WestergrenT, DoveS K, LarssonC, SommarinM (1999). Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J Biol Chem, 274(53): 38232–38240
|
82 |
Pizarro-CerdáJ, CossartP (2004). Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol, 6(11): 1026–1033
|
83 |
RamjaunA R, McPhersonP S (1996). Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J Biol Chem, 271(40): 24856–24861
|
84 |
RamjaunA R, McPhersonP S (1998). Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J Neurochem, 70(6): 2369–2376
|
85 |
RingstadN, NemotoY, De CamilliP (1997). The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci USA, 94(16): 8569–8574
|
86 |
RivasM P, KearnsB G, XieZ, GuoS, SekarM C, HosakaK, KagiwadaS, YorkJ D, BankaitisV A (1999). Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “bypass Sec14p” and inositol auxotrophy. Mol Biol Cell, 10(7): 2235–2250
|
87 |
RohdeH M, CheongF Y, KonradG, PaihaK, MayingerP, BoehmeltG (2003). The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem, 278(52): 52689–52699
|
88 |
RudgeS A, AndersonD M, EmrS D (2004). Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell, 15(1): 24–36
|
89 |
SaitoT, GuanF, PapolosD F, LauS, KleinM, FannC S, LachmanH M (2001). Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry, 6(4): 387–395
|
90 |
SbrissaD, IkonomovO C, FennerH, ShishevaA (2008). ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol, 384(4): 766–779
|
91 |
SbrissaD, IkonomovO C, FuZ, IjuinT, GruenbergJ, TakenawaT, ShishevaA (2007). Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport.Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem, 282(33): 23878–23891
|
92 |
SchorM, ThenA, TahirovicS, HugN, MayingerP (2001). The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase. Current Biol, CB 11: 1421–1426
|
93 |
Singer-KrügerB, NemotoY, DaniellL, Ferro-NovickS, De CamilliP (1998). Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J Cell Sci, 111(Pt 22): 3347–3356
|
94 |
SlepnevV I, De CamilliP (2000). Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci, 1(3): 161–172
|
95 |
SrinivasanS, SeamanM, NemotoY, DaniellL, SuchyS F, EmrS, De CamilliP, NussbaumR (1997). Disruption of three phosphatidylinositol-polyphosphate 5-phosphatase genes from Saccharomyces cerevisiae results in pleiotropic abnormalities of vacuole morphology, cell shape, and osmohomeostasis. Eur J Cell Biol, 74(4): 350–360
|
96 |
StefanC J, AudhyaA, EmrS D (2002). The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol Biol Cell, 13(2): 542–557
|
97 |
StefanC J, ManfordA G, BairdD, Yamada-HanffJ, MaoY, EmrS D (2011). Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell, 144(3): 389–401
|
98 |
StefanC J, PadillaS M, AudhyaA, EmrS D (2005). The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Mol Cell Biol, 25(8): 2910–2923
|
99 |
StolzL E, HuynhC V, ThornerJ, YorkJ D (1998). Identification and characterization of an essential family of inositol polyphosphate 5-phosphatases (INP51, INP52 and INP53 gene products) in the yeast Saccharomyces cerevisiae. Genetics, 148(4): 1715–1729
|
100 |
StopkovaP, VeveraJ, PacltI, ZukovI, LachmanH M (2004). Analysis of SYNJ1, a candidate gene for 21q22 linked bipolar disorder: a replication study. Psychiatry Res, 127(1-2): 157–161
|
101 |
StrahlT, ThornerJ (2007). Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta, 1771(3): 353–404
|
102 |
TahirovicS, SchorrM, MayingerP (2005). Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase. Traffic, 6(2): 116–130
|
103 |
TakenawaT, ItohT (2006). Membrane targeting and remodeling through phosphoinositide-binding domains. IUBMB Life, 58(5-6): 296–303
|
104 |
TholeJ M, NielsenE (2008). Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol, 11(6): 620–631
|
105 |
TholeJ M, VermeerJ E, ZhangY, GadellaT W Jr, NielsenE (2008). Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell, 20(2): 381–395
|
106 |
TrapaniJ G, ObholzerN, MoW, BrockerhoffS E, NicolsonT (2009). Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells. PLoS Genet, 5(5): e1000480
|
107 |
TrivediC M, LuoY, YinZ, ZhangM, ZhuW, WangT, FlossT, GoettlicherM, NoppingerP R, WurstW, FerrariV A, AbramsC S, GruberP J, EpsteinJ A (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med, 13(3): 324–331
|
108 |
VerstrekenP, KohT W, SchulzeK L, ZhaiR G, HiesingerP R, ZhouY, MehtaS Q, CaoY, RoosJ, BellenH J (2003). Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron, 40(4): 733–748
|
109 |
ViiriK, MäkiM, LohiO (2012). Phosphoinositides as regulators of protein-chromatin interactions. Sci Signal, 5(222): pe19
|
110 |
VoronovS V, FrereS G, GiovediS, PollinaE A, BorelC, ZhangH, SchmidtC, AkesonE C, WenkM R, CimasoniL, ArancioO, DavissonM T, AntonarakisS E, GardinerK, De CamilliP, Di PaoloG (2008). Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci USA, 105(27): 9415–9420
|
111 |
WangX, ZhangX, DongX P, SamieM, LiX, ChengX, GoschkaA, ShenD, ZhouY, HarlowJ, ZhuM X, ClaphamD E, RenD, XuH (2012). TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell, 151(2): 372–383
|
112 |
WeiH C, SannyJ, ShuH, BaillieD L, BrillJ A, PriceJ V, HardenN (2003). The Sac1 lipid phosphatase regulates cell shape change and the JNK cascade during dorsal closure in Drosophila. Current Biol, CB 13: 1882–1887
|
113 |
WhittersE A, ClevesA E, McGeeT P, SkinnerH B, BankaitisV A (1993). SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol, 122(1): 79–94
|
114 |
WilliamsM E, TorabinejadJ, CohickE, ParkerK, DrakeE J, ThompsonJ E, HortterM, DewaldD B (2005). Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol, 138(2): 686–700
|
115 |
WintersJ J, FergusonC J, LenkG M, Giger-MateevaV I, ShragerP, MeislerM H, GigerR J (2011). Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. J Neurosci, 31: 17736–17751
|
116 |
WoodC S, HungC S, HuohY S, MousleyC J, StefanC J, BankaitisV, FergusonK M, BurdC G (2012). Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase. Mol Biol Cell, 23(13): 2527–2536
|
117 |
YavariA, NagarajR, Owusu-AnsahE, FolickA, NgoK, HillmanT, CallG, RohatgiR, ScottM P, BanerjeeU (2010). Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell, 19(1): 54–65
|
118 |
Yeow-FongL, LimL, ManserE (2005). SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. FEBS Lett, 579(22): 5040–5048
|
119 |
ZhangX, ChowC Y, SahenkZ, ShyM E, MeislerM H, LiJ (2008). Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain, 131: 1990–2001
|
120 |
ZhongR, BurkD H, NairnC J, Wood-JonesA, MorrisonW H 3rd, YeZ H (2005). Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell, 17(5): 1449–1466
|
121 |
ZhongR, YeZ H (2003). The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol, 132(2): 544–555
|
122 |
ZhongS, HsuF, StefanC J, WuX, PatelA, CosgroveM S, MaoY (2012). Allosteric activation of the phosphoinositide phosphatase Sac1 by anionic phospholipids. Biochemistry, 51(15): 3170–3177
|
123 |
ZhuW, TrivediC M, ZhouD, YuanL, LuM M, EpsteinJ A (2009). Inpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res, 105(12): 1240–1247
|
/
〈 | 〉 |