How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases
Received date: 14 Nov 2012
Accepted date: 15 Feb 2013
Published date: 01 Aug 2013
Copyright
Xeroderma pigmentosum group B (XPB) and D (XPD) are two DNA helicases inside the transcription factor TFIIH complex required for both transcription and DNA repair. The importance of these helicases is underscored by the fact that mutations of XPB and XPD cause diseases with extremely high sensitivity to UV-light and high risk of cancer, premature aging, etc. This mini-review focuses on recent developments in both structural and functional characterization of these XP helicases to illustrate their distinguished biological roles within the architectural restriction of the TFIIH complex. In particular, molecular mechanisms of DNA unwinding by these helicases for promoter opening during transcription initiation and bubble-creation around the lesion during DNA repair are described based on the integration of the crystal structures of XPB and XPD helicases into the architecture of the TFIIH complex.
Key words: XPB; XPD; TFIIH; helicase; DNA repair; nucleotide excision repair; transcription
Li FAN . How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases[J]. Frontiers in Biology, 2013 , 8(4) : 363 -368 . DOI: 10.1007/s11515-013-1259-x
1 |
Chang W H, Kornberg R D (2000). Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell, 102(5): 609–613
|
2 |
Compe E, Egly J M (2012). TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol, 13(6): 343–354
|
3 |
Egly J M, Coin F (2011). A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst), 10(7): 714–721
|
4 |
Fan L, Arvai A S, Cooper P K, Iwai S, Hanaoka F, Tainer J A (2006). Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell, 22(1): 27–37
|
5 |
Fan L, Fuss J O, Cheng Q J, Arvai A S, Hammel M, Roberts V A, Cooper P K, Tainer J A (2008). XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell, 133(5): 789–800
|
6 |
Fuss J O, Tainer J A (2011). XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst), 10(7): 697–713
|
7 |
Gillet L C J, Schärer O D (2006). Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev, 106(2): 253–276
|
8 |
Hanawalt P C, Spivak G (2008). Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol, 9(12): 958–970
|
9 |
Hilario E, Li Y, Nobumori Y, Liu X, Fan L (2013). Structure of the C-terminal half of human XPB helicase and the impact of the disease-causing mutation XP11BE. Acta Crystallogr D Biol Crystallogr, 69(Pt 2): 237–246
|
10 |
Kim T K, Ebright R H, Reinberg D (2000). Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science, 288(5470): 1418–1422
|
11 |
Kuper J, Kisker C (2013). DNA Helicases in NER, BER, and MMR. Adv Exp Med Biol, 767: 203–224
|
12 |
Liu H, Rudolf J, Johnson K A, McMahon S A, Oke M, Carter L, McRobbie A M, Brown S E, Naismith J H, White M F (2008). Structure of the DNA repair helicase XPD. Cell, 133(5): 801–812
|
13 |
Mathieu N, Kaczmarek N, Naegeli H (2010). Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc Natl Acad Sci U S A, 107(41): 17545–17550
|
14 |
Min J H, Pavletich N P (2007). Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature, 449(7162): 570–575
|
15 |
Naegeli H, Modrich P, Friedberg E C (1993). The DNA helicase activities of Rad3 protein of Saccharomyces cerevisiae and helicase II of Escherichia coli are differentially inhibited by covalent and noncovalent DNA modifications. J Biol Chem, 268(14): 10386–10392
|
16 |
Naegeli H, Sugasawa K (2011). The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst), 10(7): 673–683
|
17 |
Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly J M, Coin F (2009). Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J, 28(19): 2971–2980
|
18 |
Roth H M, Römer J, Grundler V, Van Houten B, Kisker C, Tessmer I (2012). XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair (Amst), 11(3): 286–293
|
19 |
Rouillon C, White M F (2010). The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair. J Biol Chem, 285(14): 11013–11022
|
20 |
Sarker A H, Tsutakawa S E, Kostek S, Ng C, Shin D S, Peris M, Campeau E, Tainer J A, Nogales E, Cooper P K (2005). Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell, 20(2): 187–198
|
21 |
Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly J M (2000). Molecular structure of human TFIIH. Cell, 102(5): 599–607
|
21a |
Singleton M R, Dillingham M S, Wigley D B (2007). Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem, 76: 23–50
|
22 |
Wolski S C, Kuper J, Hänzelmann P, Truglio J J, Croteau D L, Van Houten B, Kisker C (2008). Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol, 6(6): e149
|
/
〈 | 〉 |