REVIEW

Roles of manganese in photosystem II dynamics to irradiations and temperatures

  • Xuejing HOU 1 ,
  • Harvey J. M. HOU , 1,2
Expand
  • 1. Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
  • 2. Department of Physical Sciences, Alabama State University, Montgomery, AL 36104, USA

Received date: 28 Feb 2012

Accepted date: 10 Apr 2012

Published date: 01 Jun 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The most amazing chemistry is the light-driven water splitting reaction occurred in the oxygen-evolving complex of phototsystem II in higher plants, green algae, and cyanobacteria. Mn, in the form of Mn4CaO5 cluster in photosystem II, is responsible for the catalytic water splitting reaction as well as plays roles in photosystem II dynamics to irradiation and temperatures. Manganese hypothesis of UV-initiated photoinhibition as a direct target is established, and thermal inactivation of photosystem II involves the valence and structural changes of manganese. Recent progresses in understanding the roles of manganese in photoinhibition especially under UV light and in thermal inactivation including elevated temperatures using synthetic models and native PS II complexes are summarized and evaluated. Potential problems and possible solutions are discussed and presented.

Cite this article

Xuejing HOU , Harvey J. M. HOU . Roles of manganese in photosystem II dynamics to irradiations and temperatures[J]. Frontiers in Biology, 2013 , 8(3) : 312 -322 . DOI: 10.1007/s11515-012-1214-2

Acknowledgments

The work was supported by the Alabama State University and University of Massachusetts Dartmouth.
1
Adir N, Zer H, Shochat S, Ohad I (2003). Photoinhibition——a historical perspective. Photosynth Res, 76(1/3): 343–370

DOI PMID

2
Allakhverdiev S I, Kreslavski V D, Klimov V V, Los D A, Carpentier R, Mohanty P (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res, 98(1–3): 541–550

DOI PMID

3
Allakhverdiev S I, Murata N (2004). Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta, 1657(1): 23–32

DOI PMID

4
Allakhverdiev S I, Murata N (2008). Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res, 98(1–3): 529–539

DOI PMID

5
Allakhverdiev S I, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov V V, Mimuro M (2010). Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA, 107(8): 3924–3929

DOI PMID

6
Allakhverdiev S I, Tsuchiya T, Watabe K, Kojima A, Los D A, Tomo T, Klimov V V, Mimuro M (2011). Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA, 108(19): 8054–8058

DOI PMID

7
Antal T K, Lo W, Armstrong W H, Tyystjärvi E (2009). Illumination with ultraviolet or visible light induces chemical changes in the water-soluble manganese complex, [Mn4O6(bpea)4]Br4. Photochem Photobiol, 85(3): 663–668

DOI PMID

8
Aro E M, Virgin I, Andersson B (1993). Photoinhibition of photosystem II. inactivation, protein damage and turnover. Biochim Biophys Acta, 1143(2): 113–134

DOI PMID

9
Barbara Demmig-Adams W W A, Autar K M (2007). Photoprotection, Photoinhibition, Gene regulation, and Environment. The Netherlands: Springer

10
Barber J, Andersson B (1992). Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci, 17(2): 61–66

DOI PMID

11
Blankenship R E (2002). Molecular Mechanisms of Photosynthesis. Blackwell Science

12
Brudvig G W (2008). Water oxidation chemistry of photosystem II. Philos Trans R Soc Lond B Biol Sci, 363(1494): 1211–1219, discussion 1218–1219

DOI PMID

13
Cady C W, Brudvig G W (2008). Functional manganese model chemistry relevant to the oxygen-evolving complex of photosystem II: oxidation of a Mn(III,IV) complex coupled to deprotonation of a terminal water ligand. In: Allen J P, Osmond B, Golbeck JH, and Gantt E Eds, Photosynthesis: Energy from the Sun. Springer, 377–382

14
Carpentier R (2005). Influence of high light intensity on photosynthesis: Photoinhibition and energy dissipation. In: Mohammad P. Ed., Handbook of Photosynthesis, 2nd Ed., Taylor & Francis, 327–342

15
Chen H, Tagore R, Olack G, Vrettos J S, Weng T C, Penner-Hahn J, Crabtree R H, Brudvig G W (2007). Speciation of the catalytic oxygen evolution system: [MnIII/IV2(μ-O)2(terpy)2(H2O)2](NO3)3+HSO5-]. Inorg Chem, 46(1): 34–43

DOI PMID

16
Chow W S (1994). Photoprotection and photoinhibitory damage. Adv Mol Cell Biol, 10: 151–196

DOI

17
Dau H, Liebisch P, Haumann M (2003). X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers—potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Anal Bioanal Chem, 376(5): 562–583

DOI PMID

18
Delosme R (2003). On some aspects of photosynthesis revealed by photoacoustic studies: a critical evaluation. Photosynth Res, 76(1/3): 289–301

DOI PMID

19
Delosme R, Beal D, Joliot P (1994). Photoacoustic detection of flash-induced charge separation in photosynthetic systems. Spectral dependence of the quantum yield. Biochim Biophys Acta, 1185(1): 56–64

DOI

20
Diner B A, Babcock G T (1996). Structure, dynamics, and energy conversion efficiency in photosystem II. In: Ort D R, Yocum C F Eds, Oxygenic Photosynthesis: The Light Reactions, Kluwer Academic Publishers, 213–247

21
Diner B A, Rappaport F (2002). Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol, 53(1): 551–580

DOI PMID

22
Edens G J, Gunner M R, Xu Q, Mauzerall D (2000). The enthalpy and entropy of reaction for formation of P+OA- from excited reaction centers of Rhodobacter sphaeroides. J Am Chem Soc, 122(7): 1479–1485

DOI

23
Ferreira K N, Iverson T M, Maghlaoui K, Barber J, Iwata S (2004). Architecture of the photosynthetic oxygen-evolving center. Science, 303(5665): 1831–1838

DOI PMID

24
Frank H A, Brudvig G W (2004). Redox functions of carotenoids in photosynthesis. Biochemistry, 43(27): 8607–8615

DOI PMID

25
Govindjee S M, Seibert M (2010). Picosecond spectroscopy of the isolated reaction centers from the photosystems of oxygenic photosynthesis—ten years (1987–1997) of fun : a tribute to Michael R. Wasielewski on his 60th birthday. Photosynth Res, 103(1): 1–6

DOI PMID

26
Hakala M, Rantamäki S, Puputti E M, Tyystjärvi T, Tyystjärvi E (2006). Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition. J Exp Bot, 57(8): 1809–1816

DOI PMID

27
Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005). Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta, 1706(1–2): 68–80

DOI PMID

28
Henry M, Hoffman M (1979). Photophysics and photochemistry of aromatic nitrogen heterocycles. Fluorescence from 2,2'-bipyridine and 1,10-phenanthroline. J Phys Chem, 83(5): 618–625

DOI

29
Hideg E, Spetea C, Vass I (1994). Singlet oxygen and free radical production during acceptor- and donor-side-induced photoinhibition. Studies with spin trapping EPR spectroscopy. Biochim Biophys Acta, 1186(3): 143–152

DOI

30
Hou H J M, Mauzerall D (2006). The A-Fx to FA/B step in synechocystis 6803 photosystem I is entropy driven. J Am Chem Soc, 128(5): 1580–1586

DOI PMID

31
Hou H J M, Mauzerall D (2011). Listening to PS II: enthalpy, entropy, and volume changes. J Photochem Photobiol B, 104(1-2): 357–365

DOI PMID

32
Hou H J M, Shen G, Boichenko V A, Golbeck J H, Mauzerall D (2009). Thermodynamics of charge separation of photosystem I in the menA and menB null mutants of Synechocystis sp. PCC 6803 determined by pulsed photoacoustics. Biochemistry, 48(8): 1829–1837

DOI PMID

33
Hou J M, Boichenko V A, Diner B A, Mauzerall D (2001a). Thermodynamics of electron transfer in oxygenic photosynthetic reaction centers: volume change, enthalpy, and entropy of electron-transfer reactions in manganese-depleted photosystem II core complexes. Biochemistry, 40(24): 7117–7125

DOI PMID

34
Hou J M, Boichenko V A, Wang Y C, Chitnis P R, Mauzerall D (2001b). Thermodynamics of electron transfer in oxygenic photosynthetic reaction centers: a pulsed photoacoustic study of electron transfer in photosystem I reveals a similarity to bacterial reaction centers in both volume change and entropy. Biochemistry, 40(24): 7109–7116

DOI PMID

35
Hughes A V, Rees P, Heathcote P, Jones M R (2006). Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides. Biophys J, 90(11): 4155–4166

DOI PMID

36
Jegerschöld C, Styring S (1991). Fast oxygen-independent degradation of the D1 reaction center protein in photosystem II. FEBS Lett, 280(1): 87–90

DOI PMID

37
Joliot P, Barbieri G, Chabaud R (1969). Model of the System II photochemical centers. Photochem Photobiol, 10: 309–329

DOI

38
Jones L W, Kok B (1966). Photoinhibition of chloroplast reactions. II. Multiple effects. Plant Physiol, 41(6): 1044–1049

DOI PMID

39
Kamiya N, Shen J R (2003). Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA, 100(1): 98–103

DOI PMID

40
Kashiyama Y, Miyashita H, Ohkubo S, Ogawa N O, Chikaraishi Y, Takano Y, Suga H, Toyofuku T, Nomaki H, Kitazato H, Nagata T, Ohkouchi N (2008). Evidence of global chlorophyll d. Science, 321(5889): 658

DOI PMID

41
Kok B, Forbush B, McGloin M (1970). Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol, 11(6): 457–475

DOI PMID

42
Kok B, Gassner E B, Rurainski H J (1966). Photoinhibition of chloroplast reactions. Photochem Photobiol, 4(2): 215–227

DOI PMID

43
Kramer D M (2010). The photonic “smart grid” of the chloroplast in action. Proc Natl Acad Sci USA, 107(7): 2729–2730

DOI PMID

44
Krivanek R, Dau H, Haumann M (2008). Enthalpy changes during photosynthetic water oxidation tracked by time-resolved calorimetry using a photothermal beam deflection technique. Biophys J, 94(5): 1890–1903

DOI PMID

45
Kyle D J, Ohad I, Arntzen C J (1984). Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci USA, 81(13): 4070–4074

DOI PMID

46
Limburg J, Vrettos J S, Chen H, de Paula J C, Crabtree R H, Brudvig G W (2001). Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)Mn(III)(O)2Mn(IV)(OH2)(terpy)](NO3)3 (terpy = 2,2′:6,2″-terpyridine). J Am Chem Soc, 123(3): 423–430

DOI PMID

47
Limburg J, Vrettos J S, Liable-Sands L M, Rheingold A L, Crabtree R H, Brudvig G W (1999). A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Science, 283(5407): 1524–1527

DOI PMID

48
Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005). Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature, 438(7070): 1040–1044

DOI PMID

49
Mauzerall D (2006). Thermodynamics in photosystem I. In J. Golbeck(ed): Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, Dordrecht: Springer, 571–581

50
Mauzerall D (2010). Changes in enthalpy of the Joliot-Kok four step cycle to produce oxygen in photosynthesis. Biophys J, 98: 173a

51
Melis A (1999). Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci, 4: 130–135

52
Mielke S P, Kiang N Y, Blankenship R E, Gunner M R, Mauzerall D (2011). Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species. Biochim Biophys Acta, 1807(9): 1231–1236

DOI PMID

53
Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996). Chlorophyll d as a major pigment. Nature, 383(6599): 402

DOI

54
Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004). Chlorophyll d in an epiphytic cyanobacterium of red algae. Science, 303(5664): 1633

DOI PMID

55
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I (2007). Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 1767(6): 414–421

DOI PMID

56
Nash D, Miyao M, Murata N (1985). Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta, 807(2): 127–133

DOI

57
Nishiyama Y, Allakhverdiev S I, Murata N (2005). Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res, 84(1–3): 1–7

DOI PMID

58
Nishiyama Y, Allakhverdiev S I, Murata N (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta, 1757(7): 742–749

DOI PMID

59
Niyogi K K (1999). Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 333–359

DOI PMID

60
Ohad I, Adir N, Koike H, Kyle D J, Inoue Y (1990). Mechanism of photoinhibition in vivo. A reversible light-induced conformational change of reaction center II is related to an irreversible modification of the D1 protein. J Biol Chem, 265(4): 1972–1979

PMID

61
Ohad I, Keren N, Zer H, Gong H, Mor T S, Gal A, Tal S, Eisenberg-Domovich Y (1994). Light induced degradation of the photochemical reaction center II-D1 protein in vivo: An intergrative approach. In: Baker NR, Bowyer JR, Eds, Photoinhibition of Photosynthesis. Oxford: Bios Scientific Publishers, 161–177

62
Ohnishi N, Allakhverdiev S I, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005). Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry, 44(23): 8494–8499

DOI PMID

63
Pearcy R W, Berry J A, Fork D C (1977). Effects of growth temperature on the thermal stability of the photosynthetic apparatus of Atriplex lentiformis (Torr.) Wats. Plant Physiol, 59(5): 873–878

DOI PMID

64
Peng D C, Hou J M, Kuang T Y, Tang C Q, Tang P S (1999). Light-induced damage of photosystem II primary electron donor P680: A high performance liquid chromatographic analysis of pigment content in D1/D2/cytochrome b559 complex under photoinhibitory conditions. J Integr Plant Biol, 41: 1307–1311

65
Pospísil P, Michael H, Dittmer J, Solé V A, Dau H (2003). Stepwise transition of the tetra-manganese complex of photosystem II to a binuclear Mn2(μ-O)2 complex in response to a temperature jump: a time-resolved structural investigation employing x-ray absorption spectroscopy. Biophys J, 84(2 Pt 1): 1370–1386

DOI PMID

66
Pospísil P, Snyrychová I, Naus J (2007). Dark production of reactive oxygen species in photosystem II membrane particles at elevated temperature: EPR spin-trapping study. Biochim Biophys Acta, 1767(6): 854–859

DOI PMID

67
Powles S B (1984). Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol, 35(1): 15–44

DOI

68
Rappaport F, Guergova-Kuras M, Nixon P J, Diner B A, Lavergne J (2002). Kinetics and pathways of charge recombination in photosystem II. Biochemistry, 41(26): 8518–8527

DOI PMID

69
Renger G, Volker M, Eckert H J, Fromme P, Hohm-Veit S, Graber P (1989). On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol, 49(1): 97–105

DOI

70
Rutherford A W, Boussac A (2004). Biochemistry. Water photolysis in biology. Science, 303(5665): 1782–1784

DOI PMID

71
Sakuragi Y, Zybailov B, Shen G, Jones A D, Chitnis P R, van der Est A, Bittl R, Zech S, Stehlik D, Golbeck J H, Bryant D A (2002). Insertional inactivation of the menG gene, encoding 2-phytyl-1,4-naphthoquinone methyltransferase of Synechocystis sp. PCC 6803, results in the incorporation of 2-phytyl-1,4-naphthoquinone into the A(1) site and alteration of the equilibrium constant between A(1) and F(X) in photosystem I. Biochemistry, 41(1): 394–405

DOI PMID

72
Sarvikas P, Hakala-Yatkin M, Dönmez S, Tyystjärvi E (2010a). Short flashes and continuous light have similar photoinhibitory efficiency in intact leaves. J Exp Bot, 61(15): 4239–4247

DOI PMID

73
Sarvikas P, Tyystjärvi T, Tyystjärvi E (2010b). Kinetics of prolonged photoinhibition revisited: photoinhibited Photosystem II centres do not protect the active ones against loss of oxygen evolution. Photosynth Res, 103(1): 7–17

DOI PMID

74
Setlik I, Allakhverdiev S I, Nedbal L, Setlikova E, Klimov V V (1990). Three types of photosystem II photoinactivation. 1. Damaging processes on the acceptor side. Photosynth Res, 23: 39–48

75
Shipton C A, Barber J (1991). Photoinduced degradation of the D1 polypeptide in isolated reaction centers of photosystem II: evidence for an autoproteolytic process triggered by the oxidizing side of the photosystem. Proc Natl Acad Sci USA, 88(15): 6691–6695

DOI PMID

76
Shipton C A, Barber J (1992). Characterisation of photoinduced breakdown of the D1-polypeptide in isolated reaction centres of Photosystem II. Biochim Biophys Acta, 1099(1): 85–90

DOI PMID

77
Shipton C A, Barber J (1994). In vivo and in vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-II reaction-centre proteins. Eur J Biochem, 220(3): 801–808

DOI PMID

78
Stewart D H, Brudvig G W (1998). Cytochrome b559 of photosystem II. Biochim Biophys Acta, 1367(1–3): 63–87

DOI PMID

79
Szabó I, Bergantino E, Giacometti G M (2005). Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Rep, 6(7): 629–634

DOI PMID

80
Szilárd A, Sass L, Deák Z, Vass I (2007). The sensitivity of Photosystem II to damage by UV-B radiation depends on the oxidation state of the water-splitting complex. Biochim Biophys Acta, 1767(6): 876–882

DOI PMID

81
Tagore R, Chen H, Zhang H, Crabtree R H, Brudvig G W (2007a). Homogeneous water oxidation by a di-μ-oxo dimanganese complex in the presence of Ce4+. Inorg Chim Acta, 360(9): 2983–2989

DOI

82
Tagore R, Crabtree R H, Brudvig G W (2007b). Distinct mechanisms of bridging-oxo exchange in di-μ-O dimanganese complexes with and without water-binding sites: implications for water binding in the O2-evolving complex of photosystem II. Inorg Chem, 46(6): 2193–2203

DOI PMID

83
Takahashi S, Murata N (2008). How do environmental stresses accelerate photoinhibition? Trends Plant Sci, 13(4): 178–182

DOI PMID

84
Telfer A (2005). Too much light? How β-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci, 4(12): 950–956

DOI PMID

85
Telfer A, He W Z, Barber J (1990). Spectral resolution of more than one chlorophyll electron donor in the isolated photosystem II reaction center complex. Biochim Biophys Acta, 1017(2): 143–151

DOI

86
Thompson L K, Blaylock R, Sturtevant J M, Brudvig G W (1989). Molecular basis of the heat denaturation of photosystem II. Biochemistry, 28(16): 6686–6695

DOI PMID

87
Thompson L K, Sturtevant J M, Brudvig G W (1986). Differential scanning calorimetric studies of photosystem II: evidence for a structural role for cytochrome b559 in the oxygen-evolving complex. Biochemistry, 25(20): 6161–6169

DOI PMID

88
Tomo T, Allakhverdiev S I, Mimuro M (2011). Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. J Photochem Photobiol B, 104(1–2): 333–340

DOI PMID

89
Tracewell C A, Vrettos J S, Bautista J A, Frank H A, Brudvig G W (2001). Carotenoid photooxidation in photosystem II. Arch Biochem Biophys, 385(1): 61–69

DOI PMID

90
Tyystjarvi E (2008). Photoinhibition of Photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev, 252(3–4): 361–376

DOI

91
Umena Y, Kawakami K, Shen J R, Kamiya N (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature, 473(7345): 55–60

DOI PMID

92
Usov O M, Grigoryants V M, Tagore R, Brudvig G W, Scholes C P (2007). Hyperfine coupling to the bridging 17O in the di-μ-oxo core of a Mn(III)-Mn(IV) model significant to the core electronic structure of the O2-evolving complex in photosystem II. J Am Chem Soc, 129(39): 11886–11887

DOI PMID

93
van Gorkom H J (1985). Electron transfer in photosystem II. Photosynth Res, 6(2): 97–112

DOI

94
van Grondelle R, Dekker J P, Gillbro T, Sundstrom V (1994). Energy transfer and trapping in photosynthesis. Biochim Biophys Acta, 1187(1): 1–65

DOI

95
Vass I, Gatzen G, Holzwarth A R (1993). Picosecond time-resolved fluorescence studies on photoinhibition and double reduction of QA in photosystem II. Biochim Biophys Acta, 1183(2): 388–396

DOI

96
Vrettos J S, Brudvig G W (2002). Water oxidation chemistry of photosystem II. Philos Trans R Soc Lond B Biol Sci, 357(1426): 1395–1404, discussion 1404–1405, 1419–1420

DOI PMID

97
Wei Z, Cady C W, Brudvig G W, Hou H J M (2011). Photodamage of a Mn(III/IV)-oxo mixed-valence compound and photosystem II: evidence that a high-valent manganese species is responsible for UV-induced photodamage of the oxygen-evolving complex in photosystem II. J Photochem Photobiol B, 104(1–2): 118–125

DOI PMID

98
Yano J, Kern J, Irrgang K D, Latimer M J, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra V K (2005). X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci USA, 102(34): 12047–12052

DOI PMID

99
Yano J, Yachandra V K (2008). Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster from X-ray spectroscopy. Inorg Chem, 47(6): 1711–1726

DOI PMID

100
Zhang F, Cady C W, Brudvig Gary W, Hou H J M (2011). Thermal Stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy = 2,2':6',2'-terpyridine) in aqueous solution. Inorg Chim Acta, 366(1): 128–133

DOI

101
Zsiros O, Allakhverdiev S I, Higashi S, Watanabe M, Nishiyama Y, Murata N (2006). Very strong UV-A light temporally separates the photoinhibition of photosystem II into light-induced inactivation and repair. Biochim Biophys Acta, 1757(2): 123–129

DOI PMID

Outlines

/