REVIEW

Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling

  • Li ZUO ,
  • William J. ROBERTS ,
  • Rosa C. TOLOMELLO ,
  • Adam T. GOINS
Expand
  • Molecular Physiology and Biophysics Laboratory, Department of Biological Sciences, Oakland University, Rochester, MI 48326, USA

Received date: 19 Mar 2012

Accepted date: 10 Apr 2012

Published date: 01 Jun 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Oxidative stress can cause extensive damage to cardiac tissue under reperfusion conditions. However, preconditioning the myocardium may diminish these negative effects and alleviate reperfusion injury. There are a variety of preconditioning therapies, such as ischemic preconditioning (IPC) and hypoxic preconditioning (HPC), each targeting specific channels, receptors, and/or intracellular molecules. Ischemic preconditioning involves brief periods of ischemia followed by brief periods of reperfusion, thus strengthening the cardiac resistance for a longer period of ischemia. IPC involves complex mechanisms, some of which are still not completely understood today. Nevertheless, many studies have already established models of IPC. In addition, similar to IPC, HPC has also been recognized as preventing reperfusion injury. Reactive oxygen species (ROS) are known mediators of IPC and HPC. Particularly, mitochondria-generated ROS initiate activity of several beneficial preconditioning pathways. The role of ROS is paradoxical; low levels of ROS are key factors in signaling IPC/HPC, but high levels of ROS can contribute to increased oxidative stress on cardiomyocytes. Therefore, it is important to determine the molecular mechanism of IPC and HPC to avoid excessive accumulation of ROS to prevent cardiac injury. In this review, we will outline IPC and HPC, explaining the putative role of ROS in both pathways. We will also discuss preconditioning efficacy in certain conditions such as exercise and how the aging myocardium responds to preconditioning therapies.

Cite this article

Li ZUO , William J. ROBERTS , Rosa C. TOLOMELLO , Adam T. GOINS . Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling[J]. Frontiers in Biology, 2013 , 8(3) : 305 -311 . DOI: 10.1007/s11515-012-1225-z

Acknowledgments

This work is supported by grants of OU General Fund G110 and Research Excellence Fund of Biomedical Research. We thank the assistance from Dr. Arik Dvir, Alicia Decker, Daniel Ratiu, Kelly Grabis, Robert Mey, Sara Musial, and Marla Gray.
1
Abete P, Ferrara N, Cacciatore F, Madrid A, Bianco S, Calabrese C, Napoli C, Scognamiglio P, Bollella O, Cioppa A, Longobardi G, Rengo F (1997). Angina-induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart? J Am Coll Cardiol, 30(4): 947-954

DOI PMID

2
Abrahamsson T, Almgren O, Carlsson L (1985). Ischemia-induced local release of myocardial noradrenaline. J Cardiovasc Pharmacol, 7(Suppl 5): S19-S22

DOI PMID

3
Ambrosio G, Zweier J L, Duilio C, Kuppusamy P, Santoro G, Elia P P, Tritto I, Cirillo P, Condorelli M, Chiariello M (1993). Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem, 268(25): 18532-18541

PMID

4
Ascensão A, Ferreira R, Magalhães J (2007). Exercise-induced cardioprotection—biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol, 117(1): 16-30

DOI PMID

5
Atsma D E, Bastiaanse E M, Jerzewski A, Van der Valk L J, Van der Laarse A (1995). Role of calcium-activated neutral protease (calpain) in cell death in cultured neonatal rat cardiomyocytes during metabolic inhibition. Circ Res, 76(6): 1071-1078

PMID

6
Behling R W, Malone H J (1995). KATP-channel openers protect against increased cytosolic calcium during ischaemia and reperfusion. J Mol Cell Cardiol, 27(9): 1809-1817

DOI PMID

7
Bélichard P, Pruneau D, Rochette L (1987). Arterial hypertension, myocardial hypertrophy and disorders of cardiac rhythm induced by ligation of the left coronary artery in the rat. Arch Mal Coeur Vaiss, 80(6): 883-887

PMID

8
Boengler K, Schulz R, Heusch G (2009). Loss of cardioprotection with ageing. Cardiovasc Res, 83(2): 247-261

DOI PMID

9
Braunwald E, Kloner R A (1985). Myocardial reperfusion: a double-edged sword? J Clin Invest, 76(5): 1713-1719

DOI PMID

10
Brookes P S, Yoon Y, Robotham J L, Anders M W, Sheu S S (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol, 287(4): C817-C833

DOI PMID

11
Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush M A, Semenza G L (2008). Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res, 77(3): 463-470

DOI PMID

12
Carlsson L, Abrahamsson T, Almgren O (1985). Local release of myocardial norepinephrine during acute ischemia: an experimental study in the isolated perfused rat heart. J Cardiovasc Pharmacol, 7(4): 791-798

DOI PMID

13
Carrasco A J, Dzeja P P, Alekseev A E, Pucar D, Zingman L V, Abraham M R, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A (2001). Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci USA, 98(13): 7623-7628

DOI PMID

14
Chen C F, Tsai S Y, Ma M C, Wu M S (2003). Hypoxic preconditioning enhances renal superoxide dismutase levels in rats. J Physiol, 552(2): 561-569

DOI PMID

15
Crawford R M, Ranki H J, Botting C H, Budas G R, Jovanovic A (2002). Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J, 16(1): 102-104

PMID

16
Davies K J (1995). Oxidative stress: the paradox of aerobic life. Biochem Soc Symp, 61: 1-31

PMID

17
Dhalla N S, Elmoselhi A B, Hata T, Makino N (2000a). Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res, 47(3): 446-456

DOI PMID

18
Dhalla N S, Temsah R M, Netticadan T (2000b). Role of oxidative stress in cardiovascular diseases. J Hypertens, 18(6): 655-673

DOI PMID

19
Downey J M, Krieg T, Cohen M V (2008). Mapping preconditioning’s signaling pathways: an engineering approach. Ann N Y Acad Sci, 1123(1): 187-196

DOI PMID

20
Duranteau J, Chandel N S, Kulisz A, Shao Z, Schumacker P T (1998). Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem, 273(19): 11619-11624

DOI PMID

21
Elmoselhi A B, Lukas A, Ostadal P, Dhalla N S (2003). Preconditioning attenuates ischemia-reperfusion-induced remodeling of Na+-K+-ATPase in hearts. Am J Physiol Heart Circ Physiol, 285(3): H1055-H1063

PMID

22
Fryer R M, Eells J T, Hsu A K, Henry M M, Gross G J (2000). Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol Heart Circ Physiol, 278(1): H305-H312

PMID

23
Garlid K D, Paucek P, Yarov-Yarovoy V, Sun X, Schindler P A (1996). The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem, 271(15): 8796-8799

DOI PMID

24
Giordano F J (2005). Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest, 115(3): 500-508

PMID

25
Gopalakrishna R, Anderson W B (1989). Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci USA, 86(17): 6758-6762

DOI PMID

26
Gross G J, Hsu A, Falck J R, Nithipatikom K (2007). Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. J Mol Cell Cardiol, 42(3): 687-691

DOI PMID

27
Halestrap A P (1989). The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta, 973(3): 355-382

DOI PMID

28
Hamilton K L, Staib J L, Phillips T, Hess A, Lennon S L, Powers S K (2003). Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med, 34(7): 800-809

DOI PMID

29
Hekimi S, Lapointe J, Wen Y (2011). Taking a “good” look at free radicals in the aging process. Trends Cell Biol, 21(10): 569-576

DOI PMID

30
Huang Y, Hickey R P, Yeh J L, Liu D, Dadak A, Young L H, Johnson R S, Giordano F J (2004). Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J, 18(10): 1138-1140

PMID

31
Jaffe M D, Quinn N K (1980). Warm-up phenomenon in angina pectoris. Lancet, 316(8201): 934-936

DOI PMID

32
Juhaszova M, Zorov D B, Kim S H, Pepe S, Fu Q, Fishbein K W, Ziman B D, Wang S, Ytrehus K, Antos C L, Olson E N, Sollott S J (2004). Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest, 113(11): 1535-1549

PMID

33
Kim M S, Akera T (1987). O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase. Am J Physiol, 252(2 Pt 2): H252-H257

PMID

34
Kloner R A, Jennings R B (2001). Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation, 104(25): 3158-3167

DOI PMID

35
Lemasters J J, Theruvath T P, Zhong Z, Nieminen A L (2009). Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta, 1787(11): 1395-1401

DOI PMID

36
Light P E, Sabir A A, Allen B G, Walsh M P, French R J (1996). Protein kinase C-induced changes in the stoichiometry of ATP binding activate cardiac ATP-sensitive K+ channels. A possible mechanistic link to ischemic preconditioning. Circ Res, 79(3): 399-406

PMID

37
McArdle F, Spiers S, Aldemir H, Vasilaki A, Beaver A, Iwanejko L, McArdle A, Jackson M J (2004). Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. J Physiol, 561(1): 233-244

DOI PMID

38
Murphy E, Steenbergen C (2007). Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res, 75(3): 478-486

DOI PMID

39
Nayler W G, Elz J S (1986). Reperfusion injury: laboratory artifact or clinical dilemma? Circulation, 74(2): 215-221

DOI PMID

40
Opie L H (1992). Cardiac metabolism—emergence, decline, and resurgence`. Part II. Cardiovasc Res, 26(9): 817-830

DOI PMID

41
Osada M, Takeda S, Sato T, Komori S, Tamura K (1994). The protective effect of preconditioning on reperfusion-induced arrhythmia is lost by treatment with superoxide dismutase. Jpn Circ J, 58(4): 259-263

DOI PMID

42
Pagliaro P, Gattullo D, Rastaldo R, Losano G (2001). Ischemic preconditioning: from the first to the second window of protection. Life Sci, 69(1): 1-15

DOI PMID

43
Park J W, Chun Y S, Kim Y H, Kim C H, Kim M S (1997). Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat. Life Sci, 60(24): 2207-2219

DOI PMID

44
Peternelj T T, Coombes J S (2011). Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med, 41(12): 1043-1069

DOI PMID

45
Rose G, Crocco P, De Rango F, Montesanto A, Passarino G (2011). Further support to the uncoupling-to-survive theory: the genetic variation of human UCP genes is associated with longevity. PLoS ONE, 6(12): e29650

DOI PMID

46
Saini H K, Machackova J, Dhalla N S (2004). Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid Redox Signal, 6(2): 393-404

DOI PMID

47
Sanada S, Komuro I, Kitakaze M (2011). Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol, 301(5): H1723-H1741

DOI PMID

48
Stubbs S L, Hsiao S T, Peshavariya H, Lim S Y, Dusting G J, Dilley R J (2012) Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev, Available online in Januaryβ27, 2012

49
Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marbán E, Nakaya H (2002). Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest, 109(4): 509-516

PMID

50
Tanaka M, Fujiwara H, Yamasaki K, Sasayama S (1994). Superoxide dismutase and N-2-mercaptopropionyl glycine attenuate infarct size limitation effect of ischaemic preconditioning in the rabbit. Cardiovasc Res, 28(7): 980-986

DOI PMID

51
Turrell H E, Rodrigo G C, Norman R I, Dickens M, Standen N B (2011). Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J Mol Cell Cardiol, 51(3): 370-380

DOI PMID

52
Vanden Hoek T L, Becker L B, Shao Z, Li C, Schumacker P T (1998). Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem, 273(29): 18092-18098

DOI PMID

53
Wojtovich A P, Brookes P S (2008). The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta, 1777(7-8): 882-889

DOI PMID

54
Wojtovich A P, Nadtochiy S M, Brookes P S, Nehrke K (2012). Ischemic preconditioning: the role of mitochondria and aging. Exp Gerontol, 47(1): 1-7

DOI PMID

55
Yang X, Cohen M V, Downey J M (2010). Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther, 24(3): 225-234

DOI PMID

56
Yuan G J, Ma J C, Gong Z J, Sun X M, Zheng S H, Li X (2005). Modulation of liver oxidant-antioxidant system by ischemic preconditioning during ischemia/reperfusion injury in rats. World J Gastroenterol, 11(12): 1825-1828

PMID

57
Zuo L, Chen Y R, Reyes L A, Lee H L, Chen C L, Villamena F A, Zweier J L (2009). The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia-reperfusion injury through preservation of mitochondrial electron transport. J Pharmacol Exp Ther, 329(2): 515-523

DOI PMID

58
Zuo L, Pasniciuc S, Wright V P, Merola A J, Clanton T L (2003). Sources for superoxide release: lessons from blockade of electron transport, NADPH oxidase, and anion channels in diaphragm. Antioxid Redox Signal, 5(5): 667-675

DOI PMID

Outlines

/