RESEARCH ARTICLE

Criticality, adaptability and early-warning signals in time series in a discrete quasispecies model

  • R. FOSSION , 1,2 ,
  • D. A. HARTASÁNCHEZ 2,3 ,
  • O. RESENDIS-ANTONIO 4 ,
  • A. FRANK 2,5
Expand
  • 1. Instituto Nacional de Geriatría, Periférico Sur No. 2767, Col. San Jerónimo Lídice, Del. Magdalena Contreras, 10200 México D.F., Mexico
  • 2. Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
  • 3. Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Catalonia, Spain
  • 4. Systems Biology Group, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico
  • 5. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico

Received date: 10 Dec 2012

Accepted date: 01 Feb 2013

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Complex systems from different fields of knowledge often do not allow a mathematical description or modeling, because of their intricate structure composed of numerous interacting components. As an alternative approach, it is possible to study the way in which observables associated with the system fluctuate in time. These time series may provide valuable information about the underlying dynamics. It has been suggested that complex dynamic systems, ranging from ecosystems to financial markets and the climate, produce generic early-warning signals at the “tipping points,” where they announce a sudden shift toward a different dynamical regime, such as a population extinction, a systemic market crash, or abrupt shifts in the weather. On the other hand, the framework of Self-Organized Criticality (SOC), suggests that some complex systems, such as life itself, may spontaneously converge toward a critical point. As a particular example, the quasispecies model suggests that RNA viruses self-organize their mutation rate near the error-catastrophe threshold, where robustness and evolvability are balanced in such a way that survival is optimized. In this paper, we study the time series associated to a classical discrete quasispecies model for different mutation rates, and identify early-warning signals for critical mutation rates near the error-catastrophe threshold, such as irregularities in the kurtosis and a significant increase in the autocorrelation range, reminiscent of 1/f noise. In the present context, we find that the early-warning signals, rather than broadcasting the collapse of the system, are the fingerprint of survival optimization.

Cite this article

R. FOSSION , D. A. HARTASÁNCHEZ , O. RESENDIS-ANTONIO , A. FRANK . Criticality, adaptability and early-warning signals in time series in a discrete quasispecies model[J]. Frontiers in Biology, 2013 , 8(2) : 247 -259 . DOI: 10.1007/s11515-013-1256-0

Acknowledgements

We acknowledge financial support from CONACYT (grants CB-2011-01-167441, CB-2010-01-155663 and I010/266/2011/C-410-11) and PAPIIT-DGAPA (grant IN114411). This work was partly funded by the project FP7-PEOPLE-2009-IRSES-247541-MATSIQEL. The authors wish to thank Dr. R. Mansilla, Dr. I.O. Morales and Dr. Landa for fruitful discussions on aspects of non-stationarity.
1
Addison P (1997). Fractals and chaos: An illustrated course. Bristol and Philadelphia: Institute of Publishing

2
Aldana M, Balleza E, Kauffman S, Resendiz O (2007). Robustness and evolvability in genetic regulatory networks. J Theor Biol, 245(3): 433-448

DOI PMID

3
Anderson J P, Daifuku R, Loeb L A (2004). Viral error catastrophe by mutagenic nucleosides. Annu Rev Microbiol, 58(1): 183-205

DOI PMID

4
Azhar M A, Gopala K (1992). Clustering Poisson process and burst noise. Jpn J Appl Phys, 31(Part 1, No. 2A): 391-394

DOI

5
Bak P (1996). How Nature works: the science of self-organized criticality. New York: Springer-Verlag.

6
Bak P, Tang C, Wiesenfeld K (1987). Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett, 59(4): 381-384

DOI PMID

7
Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci USA, 105(4): 1232-1237

DOI PMID

8
Bedeian A G, Mossholder K W (2000). On the use of the coe.cient of variation as a measure of diversity. Organ Res Methods, 3(3): 285-297

DOI

9
Berglund N, Gentz B (2002). Metastability in simple climate models: pathwise analysis of slowly driven langevin equations. Stoch Dyn, 2(03): 327-356

DOI

10
Biebricher C K, Eigen M (2005). The error threshold. Virus Res, 107(2): 117-127

DOI PMID

11
Biggs R, Carpenter S R, Brock W A (2009). Turning back from the brink: detecting an impending regime shift in time to avert it. Proc Natl Acad Sci USA, 106(3): 826-831

DOI PMID

12
Boettiger C, Hastings A (2013). Tipping points: From patterns to predictions. Nature, 493(7431): 157-158

PMID

13
Bull J J, Meyers L A, Lachmann M (2005), Quasispecies made simple. Plos Comput Biol, 1: e61 (0450-0460).

14
Carpenter S R, Brock W A (2006). Rising variance: a leading indicator of ecological transition. Ecol Lett, 9(3): 311-318

DOI PMID

15
Carpenter S R, Brock W A (2010). Early warnings of regime shifts in spatial dynamics using the discrete fourier transform. Ecosphere, 1(5): 10

DOI

16
Carpenter S R, Cole J J, Pace M L, Batt R, Brock W A, Cline T, Coloso J, Hodgson J R, Kitchell J F, Seekell D A, Smith L, Weidel B (2011). Early warnings of regime shifts: a whole-ecosystem experiment. Science, 332(6033): 1079-1082

DOI PMID

17
Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M (2010). Scale-free correlations in starling flocks. Proc Natl Acad Sci USA, 107(26): 11865-11870

DOI PMID

18
Crotty S, Cameron C E, Andino R (2001). RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA, 98(12): 6895-6900

DOI PMID

19
DeCarlo L T (1997). On the meaning and use of kurtosis. Psychol Methods, 2(3): 292-307

DOI

20
Doane D P, Seward L E (2011). Measuring skewness: A forgotten statistic? J Stat Educ, 19: 1-18

21
Drake J M, Griffen B D (2010). Early warning signals of extinction in deteriorating environments. Nature, 467(7314): 456-459

DOI PMID

22
Eigen M (2002). Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA, 99(21): 13374-13376

DOI PMID

23
Flandrin P (1989). On the spectrum of fractional brownian motion. IEEE Trans Inf Theory, 35(1): 197-199

DOI

24
Fossion R, Landa E, Stránský P, Velázquez V, López Vieyra J C, Garduño, García D, Frank A (2010). Scale invariance as a symmetry in physical and biological systems: Listening to photons, bubbles and heartbeats. In: Benet L, Hess P O, Torres J M, Wolf K B, editors, Symmetries in Nature: Symposium in Memoriam Marcos Moshinsky (Cuernavaca, Mexico, 7 - 14 August), New York: AIP Conf. Proc., volume 1323: 74-90

25
Guttal V, Jayaprakash C (2008). Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol Lett, 11(5): 450-460

DOI PMID

26
Halley J M (1996). Ecology, evolution and 1/f -noise. Trends Ecol Evol, 11(1): 33-37

DOI PMID

27
Halley J M, Inchausti P (2004). The increasing importance of 1/f-noises as models of ecological variability. Fluct Noise Lett, 4(02): R1-R6

DOI

28
Hausdorff J M, Peng C K (1996). Multiscaled randomness: A possible source of 1/f noise in biology. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 54(2): 2154-2157

DOI PMID

29
Hausdorff J M, Zemany L, Peng C K, Goldberger A L (1999). Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol, 86(3): 1040-1047

PMID

30
Jonsson C B, Milligan B G, Arterburn J B (2005). Potential importance of error catastrophe to the development of antiviral strategies for hantaviruses. Virus Res, 107(2): 195-205

DOI PMID

31
Kauffman S (1995). At home in the universo: The search for the laws of self-organization and complexity. New York, Oxford: Oxford University Press

32
Keshner M S (1982). 1/f noise. Proc IEEE, 70(3): 212-218

DOI

33
Kleinen T, Held H, Petschel-Held G (2003). The potential role of spectral properties in detecting thresholds in the earth system: application to the thermohaline circulation. Ocean Dyn, 53(2): 53-63

DOI

34
Landa E, Morales I O, Fossion R, Stránský P, Velázquez V, Vieyra J C, Frank A (2011). Criticality and long-range correlations in time series in classical and quantum systems. Phys Rev E Stat Nonlin Soft Matter Phys, 84(1 Pt 2): 016224

DOI PMID

35
Lauring A S, Andino R (2010). Quasispecies theory and the behavior of RNA viruses. PLoS Pathog, 6(7): e1001005

DOI PMID

36
Lenski R E, Barrick J E, Ofria C (2006). Balancing robustness and evolvability. PLoS Biol, 4(12): e428

DOI PMID

37
Livina V N, Lenton T M (2007). A modified method for detecting incipient bifurcations in a dynamical system. Geophys Res Lett, 34(3): L03712

DOI

38
Manneville P (1980). Intermittency self-similarity and 1/f spectrum in dissipative dynamical systems. J Phys (Paris), 41(11): 1235-1243

DOI

39
Miramontes O (1995). Order-disorder transitions in the behavior of ant societies. Complexity, 1: 50-60

40
Peng C K, Mietus J, Hausdorff J M, Havlin S, Stanley H E, Goldberger A L, (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett, 70(9): 1343-1346

DOI PMID

41
Procaccia I, Schuster H (1983). Functional renormalization-group theory of universal 1/f noise in dynamical systems. Phys Rev A, 28(2): 1210-1212

DOI

42
Rosenstein M T, Collins J J, Luca C J D (1993). A practical method for calculating largest lyapunov exponents from small data sets. Physica D, 65(1-2): 117-134

DOI

43
Scheffer M, Bascompte J, Brock W A, Brovkin V, Carpenter S R, Dakos V, Held H, van Nes E H, Rietkerk M, Sugihara G (2009). Early-warning signals for critical transitions. Nature, 461(7260): 53-59

DOI PMID

44
Scheffer M, Carpenter S, Foley J A, Folke C, Walker B (2001). Catastrophic shifts in ecosystems. Nature, 413(6856): 591-596

DOI PMID

45
Scheffer M, Carpenter S R, Lenton T M, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput I A, Levin S A, van Nes E H, Pascual M, Vandermeer J (2012). Anticipating critical transitions. Science, 338(6105): 344-348

DOI PMID

46
Schuster H, Just W (2005) Deterministic chaos: an introduction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 4th edition.

47
Solé R V (2003). Phase transitions in unstable cancer cell populations. Eur Phys J B, 35: 117-123

DOI

48
Solé R V, Ferrer R, González-García I, Quer J, Domingo E (1999b). Red queen dynamics, competition and critical points in a model of RNA virus quasispecies. J Theor Biol, 198(1): 47-59

DOI PMID

49
Solé R V, Manrubia S C, Benton M, Kauffman S, Bak P (1999a). Criticality and scaling in evolutionary ecology. Trends Ecol Evol, 14(4): 156-160

50
Solé R V, Miramontes O, Goodwin B C (1993a). Oscillations and chaos in ant societies. J Theor Biol, 161(3): 343-357

DOI

51
Solé R V, Miramontes O, Goodwin B C (1993b) Emergent behaviour in insect societies: Global oscillations, chaos and computation. In: Haken H, Mikhailov A, editors, Interdisciplinary Approaches To Nonlinear Complex Systems, Springer Series in Synergetics. Berlin Heidelberg: Springer-Verlag, volume 62:, 77-88

52
Wakeley J (2006). Coalescent theory: An introduction. Greenwood Village, Colorado: Roberts & Co

53
Wilke C O, Wang J L, Ofria C, Lenski R E, Adami C (2001). Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature, 412(6844): 331-333

DOI PMID

54
Williams G P (1997). Chaos theory tamed. Washington D.C.: Joseph Henry Press

Outlines

/