Received date: 04 Jan 2012
Accepted date: 02 May 2012
Published date: 01 Apr 2013
Copyright
Biomineralization processes are frequently found in nature. Living organisms use various strategies to create highly ordered and hierarchical mineral structures under physiologic conditions in which the temperatures and pressures are much lower than those required to form the same mineralized structures by chemical synthesis. Although the mechanism of biomineralization remains elusive, proteins have been found responsible for the formation of such mineral structures in many cases. These proteins are active components in the process of biomineralization. The mechanisms by which their function can vary from providing active organic matrices that control the formation of specific mineral structures to being catalysts that facilitate the crystallization of certain metal ions. This review summarizes the current understanding of the functions of several representative biomineralization proteins from vertebrates to bacteria in the hopes of providing useful insight and guidance for further elucidation of mechanisms of biomineralization processes in living organisms.
Lijun WANG , Marit NILSEN-HAMILTON . Biomineralization proteins: from vertebrates to bacteria[J]. Frontiers in Biology, 2013 , 8(2) : 234 -246 . DOI: 10.1007/s11515-012-1205-3
1 |
Addadi L, Weiner S (1985). Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA, 82(12): 4110–4114
|
2 |
Aichmayer B, Margolis H C, Sigel R, Yamakoshi Y, Simmer J P, Fratzl P (2005). The onset of amelogenin nanosphere aggregation studied by small-angle X-ray scattering and dynamic light scattering. J Struct Biol, 151(3): 239–249
|
3 |
Amemiya Y, Arakaki A, Staniland S S, Tanaka T, Matsunaga T (2007). Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials, 28(35): 5381–5389
|
4 |
Arakaki A, Webb J, Matsunaga T (2003). A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem, 278(10): 8745–8750
|
5 |
Balkwill D L, Maratea D, Blakemore R P (1980). Ultrastructure of a magnetotactic spirillum. J Bacteriol, 141(3): 1399–1408
|
6 |
Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2(3): 217–230
|
7 |
Bell P E, Mills A L, Herman J S (1987). Biogeochemical donditions favoring magnetite formation during anaerobic iron reduction. Appl Environ Microbiol, 53(11): 2610–2616
|
8 |
Berthet-Colominas C, Miller A, White S W (1979). Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol, 134(3): 431–445
|
9 |
Blakemore R (1975). Magnetotactic bacteria. Science, 190(4212): 377–379
|
10 |
Blakemore R P, Maratea D, Wolfe R S (1979). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol, 140(2): 720–729
|
11 |
Bonucci E (2009). Calcification and silicification: a comparative survey of the early stages of biomineralization. J Bone Miner Metab, 27(3): 255–264
|
12 |
Brinker C J, Scherrer G W (1990). Sol-gel science: the chemistry of sol-gel processing. New York: Academic Press
|
13 |
Brunner E, Gröger C, Lutz K, Richthammer P, Spinde K, Sumper M (2009). Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol, 84(4): 607–616
|
14 |
Brutchey R L, Cheng G, Gu Q, Morse D E (2008). Positive temperature coefficient of resistivity in donor-doped BaTiO3 ceramics derived from nanocrystals synthesized at low temperature. Adv Mater, 20(5): 1029–1033
|
15 |
Brutchey R L, Morse D E (2006). Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew Chem Int Ed Engl, 45(39): 6564–6566
|
16 |
Brutchey R L, Morse D E (2008). Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem Rev, 108(11): 4915–4934
|
17 |
Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA, 96(2): 361–365
|
18 |
Chen C L, Bromley K M, Moradian-Oldak J, DeYoreo J J (2011). In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc, 133(43): 17406–17413
|
19 |
Cölfen H (2010). Biomineralization: A crystal-clear view. Nat Mater, 9(12): 960–961
|
20 |
Cowan P M, McGavin S, North A C T (1955). The polypeptide chain configuration of collagen. Nature, 176(4492): 1062–1064
|
21 |
Crookes-Goodson W J, Slocik J M, Naik R R (2008). Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev, 37(11): 2403–2412
|
22 |
Daculsi G, Kerebel B (1978). High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. J Ultrastruct Res, 65(2): 163–172
|
23 |
Dey A, Bomans P H H, Müller F A, Will J, Frederik P M, de With G, Sommerdijk N A J M (2010). The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater, 9(12): 1010–1014
|
24 |
Diekwisch T G H, Berman B J, Gentner S, Slavkin H C (1995). Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res, 279(1): 149–167
|
25 |
Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005a). Corrections and clarifications. Science, 309(5744): 2166
|
26 |
Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005b). Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science, 307(5714): 1450–1454
|
27 |
Dugdale R C, Wilkerson F P (1998). Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 391(6664): 270–273
|
28 |
Dunin-Borkowski R E, McCartney M R, Frankel R B, Bazylinski D A, Pósfai M, Buseck P R (1998). Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 282(5395): 1868–1870
|
29 |
Eastoe J E (1979). Enamel protein chemistry—past, present and future. J Dent Res, 58(Spec Issue B suppl): 753–764
|
30 |
Evans J W, Thiel P A (2010). Chemistry. A little chemistry helps the big get bigger. Science, 330(6004): 599–600
|
31 |
Faivre D, Böttger L H, Matzanke B F, Schüler D (2007). Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Ed Engl, 46(44): 8495–8499
|
32 |
Faivre D, Schüler D (2008). Magnetotactic bacteria and magnetosomes. Chem Rev, 108(11): 4875–4898
|
33 |
Falciatore A, Bowler C (2002). Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol, 53(1): 109–130
|
34 |
Fincham A G, Leung W, Tan J and Moradian-Oldak J (1998). Does amelogenin nanosphere assembly proceed through intermediary-sized structures? Connect Tissue Res, 38(1–4): 237–240; discussion 241–236
|
35 |
Fincham A G, Moradian-Oldak J, Diekwisch T G, Lyaruu D M, Wright J T, Bringas P Jr, Slavkin H C (1995). Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol, 115(1): 50–59
|
36 |
Fincham A G, Moradian-Oldak J, Simmer J P, Sarte P, Lau E C, Diekwisch T, Slavkin H C (1994). Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J Struct Biol, 112(2): 103–109
|
37 |
Frankel R B, Bazylinski D A, Johnson M S, Taylor B L (1997). Magneto-aerotaxis in marine coccoid bacteria. Biophys J, 73(2): 994–1000
|
38 |
Frankel R B, Blakemore R P, Wolfe R S (1979). Magnetite in freshwater magnetotactic bacteria. Science, 203(4387): 1355–1356
|
39 |
Friddle R W, Battle K, Trubetskoy V, Tao J, Salter E A, Moradian-Oldak J, De Yoreo J J, Wierzbicki A (2011). Single-molecule determination of the face-specific adsorption of Amelogenin’s C-terminus on hydroxyapatite. Angew Chem Int Ed Engl, 50(33): 7541–7545
|
40 |
Glimcher M J (1959). Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys, 31(2): 359–393
|
41 |
Glimcher M J, Bonar L C, Grynpas M D, Landis W J, Roufosse A H (1981). Recent studies of bone mineral: Is the amorphous calcium phosphate theory valid? J Cryst Growth, 53(1): 100–119
|
42 |
Gorby Y A, Beveridge T J, Blakemore R P (1988). Characterization of the bacterial magnetosome membrane. J Bacteriol, 170(2): 834–841
|
43 |
Gorski J P (1992). Acidic phosphoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcif Tissue Int, 50(5): 391–396
|
44 |
Gower L B (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev, 108(11): 4551–4627
|
45 |
Grynpas M D, Omelon S (2007). Transient precursor strategy or very small biological apatite crystals? Bone, 41(2): 162–164
|
46 |
Hildebrand M (2003). Biological processing of nanostructured silica in diatoms. Prog Org Coat, 47(3–4): 256–266
|
47 |
Hildebrand M (2008). Diatoms, biomineralization processes, and genomics. Chem Rev, 108(11): 4855–4874
|
48 |
Hodge A, Petruska J (1963). Aspects of Protein Structure. New York: Academic Press
|
49 |
Hulmes D J, Wess T J, Prockop D J, Fratzl P (1995). Radial packing, order, and disorder in collagen fibrils. Biophys J, 68(5): 1661–1670
|
50 |
Kaluzhnaya O, Belikova A, Podolskaya E, Krasko A, Müller W, Belikov S (2007). Identification of silicateins in freshwater sponge Lubomirskia baicalensis. Mol Biol, 41(4): 554–561
|
51 |
Katz E P, Li S T (1973). Structure and function of bone collagen fibrils. J Mol Biol, 80(1): 1–15
|
52 |
Kisailus D, Truong Q, Amemiya Y, Weaver J C, Morse D E (2006). Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc Natl Acad Sci USA, 103(15): 5652–5657
|
53 |
Komeili A (2007). Molecular mechanisms of magnetosome formation. Annu Rev Biochem, 76(1): 351–366
|
54 |
Komeili A (2012). Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev, 36(1): 232–255
|
55 |
Krasko A, Lorenz B, Batel R, Schröder H C, Müller I M, Müller W E G (2000). Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem, 267(15): 4878–4887
|
56 |
Krasko A, Schröder H C, Batel R, Grebenjuk V A, Steffen R, Müller I M, Müller W E G (2002). Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol, 21(1): 67–80
|
57 |
Kröger N, Poulsen N (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet, 42(1): 83–107
|
58 |
Landis W J, Silver F H (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs, 189(1–4): 20–24
|
59 |
Levi C, Barton J L, Guillemet C, Bras E, Lehuede P (1989). A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J Mater Sci Lett, 8(3): 337–339
|
60 |
Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010). Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA, 107(14): 6316–6321
|
61 |
Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007). Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. ChemBioChem, 8(14): 1729–1735
|
62 |
Matsunaga T, Okamura Y, Fukuda Y, Wahyudi A T, Murase Y, Takeyama H (2005). Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res, 12(3): 157–166
|
63 |
Miller A and Parker S B (1984). Collagen: The organic matrix of bone. Philos Trans R Soc, B 304(1121): 455–477
|
64 |
Moradian-Oldak J (2001). Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol, 20(5-6): 293–305
|
65 |
Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N (2002). Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal. Matrix Biol, 21(2): 197–205
|
66 |
Moradian-Oldak J, Du C, Falini G (2006). On the formation of amelogenin microribbons. Eur J Oral Sci, 114(s1 Suppl 1): 289–296, discussion 327–329, 382
|
67 |
Moradian-Oldak J, Jimenez I, Maltby D, Fincham A G (2001). Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions. Biopolymers, 58(7): 606–616
|
68 |
Moradian-Oldak J, Paine M L, Lei Y P, Fincham A G, Snead M L (2000). Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol, 131(1): 27–37
|
69 |
Müller W E G, Boreiko A, Schlossmacher U, Wang X, Tahir M N, Tremel W, Brandt D, Kaandorp J A, Schröder H C (2007). Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials, 28(30): 4501–4511
|
70 |
Murat D, Byrne M, Komeili A (2010a). Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol, 2(10): a000422
|
71 |
Murat D, Quinlan A, Vali H, Komeili A (2010b). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA, 107(12): 5593–5598
|
72 |
Murr M M, Morse D E (2005). Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA, 102(33): 11657–11662
|
73 |
Nies D H (2011). How iron is transported into magnetosomes. Mol Microbiol, 82(4): 792–796
|
74 |
Nudelman F, Pieterse K, George A, Bomans P H, Friedrich H, Brylka L J, Hilbers P A, de With G, Sommerdijk N A (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater, 9(12): 1004–1009
|
75 |
Ofer S, Nowik I, Bauminger E R, Papaefthymiou G C, Frankel R B, Blakemore R P (1984). Magnetosome dynamics in magnetotactic bacteria. Biophys J, 46(1): 57–64
|
76 |
Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y-Y, Kaufman M J, Douglas E P and Gower L B (2007). Bone structure and formation: A new perspective. Mater Sci Eng, R 58(3–5): 77–116
|
77 |
Pascal J L, Clementine G, Jacques L, Thibaud C (2005). Mimicking biogenic silica nanostructures formation. Curr Nanosci, 1(1): 73–83
|
78 |
Penninga I, de Waard H, Moskowitz B M, Bazylinski D A, Frankel R B (1995). Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. J Magn Magn Mater, 149(3): 279–286
|
79 |
Piez K A (1965). Characterization of a collagen from codfish skin containing three chromatographically different α chains. Biochemistry, 4(12): 2590–2596
|
80 |
Piez K A, Lewis M S, Martin G R, Gross J (1961). Subunits of the collagen molecule. Biochim Biophys Acta, 53(3): 596–598
|
81 |
Posner A S, Betts F (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res, 8(8): 273– 281
|
82 |
Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi A M, Raheli F, Benatti U, Müller W E G, Giovine M (2004). Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol (NY), 6(6): 594–603
|
83 |
Prozorov T, Mallapragada S, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams T, Bazylinski D, Prozorov R, Canfield P (2007a). Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater, 17(6): 951–957
|
84 |
Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada S K, Narasimhan B, Canfield P C, Prozorov R (2007b). Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano, 1(3): 228–233
|
85 |
Rabuffetti F A, Lee J S, Brutchey R L (2012). Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals. Adv Mater, 24(11): 1434–1438
|
86 |
Ramachandran G N, Kartha G (1955). Structure of collagen. Nature, 176(4482): 593–595
|
87 |
Rich A, Crick F H C (1955). The structure of collagen. Nature, 176(4489): 915–916
|
88 |
Richter M, Kube M, Bazylinski D A, Lombardot T, Glöckner F O, Reinhardt R, Schüler D (2007). Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol, 189(13): 4899–4910
|
89 |
Schröder H C, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller I M, Müller W E G (2004a). Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J, 381(Pt 3): 665–673
|
90 |
Schröder H C, Perović-Ottstadt S, Wiens M, Batel R, Müller I M, Müller W E (2004b). Differentiation capacity of epithelial cells in the sponge Suberites domuncula. Cell Tissue Res, 316(2): 271–280
|
91 |
Schüler D (2008). Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev, 32(4): 654–672
|
92 |
Shaw W J, Campbell A A, Paine M L, Snead M L (2004). The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface. J Biol Chem, 279(39): 40263–40266
|
93 |
Shimizu K, Cha J, Stucky G D, Morse D E (1998). Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA, 95(11): 6234–6238
|
94 |
Simmer J P, Fincham A G (1995). Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med, 6(2): 84–108
|
95 |
Simpson T L (1984). The cell biology of sponges. New York: Springer Publishing
|
96 |
Staniland S, Ward B, Harrison A, van der Laan G, Telling N (2007). Rapid magnetosome formation shown by real-time X-ray magnetic circular dichroism. Proc Natl Acad Sci USA, 104(49): 19524–19528
|
97 |
Stöber W, Fink A, Bohn E (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci, 26(1): 62–69
|
98 |
Sumper M, Brunner E (2006). Learning from diatoms: Nature's tools for the production of nanostructured silica. Adv Funct Mater, 16(1): 17–26
|
99 |
Tacke R (1999). Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angew Chem Int Ed Engl, 38(20): 3015–3018
|
100 |
Tanaka M, Mazuyama E, Arakaki A, Matsunaga T (2011). MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J Biol Chem, 286(8): 6386–6392
|
101 |
Tarasevich B J, Lea S, Bernt W, Engelhard M, Shaw W J (2009). Adsorption of amelogenin onto self-assembled and fluoroapatite surfaces. J Phys Chem B, 113(7): 1833–1842
|
102 |
Tarasevich B J, Lea S, Shaw W J (2010). The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces. J Struct Biol, 169(3): 266–276
|
103 |
Termine J D, Kleinman H K, Whitson S W, Conn K M, McGarvey M L, Martin G R (1981). Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 26(1 Pt 1): 99–105
|
104 |
Termine J D, Posner A S (1966). Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science, 153(3743): 1523–1525
|
105 |
Thiel P A, Shen M, Liu D J, Evans J W (2009). Coarsening of two-dimensional nanoclusters on metal surfaces. J Phys Chem C, 113(13): 5047–5067
|
106 |
Traub W, Arad T, Weiner S (1989). Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA, 86(24): 9822–9826
|
107 |
Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E, Plitzko J M, Zarivach R, Kasama T, Wanner G, Pósfai M, Böttger L, Matzanke B, Schüler D (2011). The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol Microbiol, 82(4): 818–835
|
108 |
Wang L, Prozorov T, Palo P E, Liu X, Vaknin D, Prozorov R, Mallapragada S, Nilsen-Hamilton M (2012a). Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules, 13(1): 98– 105
|
109 |
Wang W, Bu W, Wang L, Palo P E, Mallapragada S, Nilsen-Hamilton M, Vaknin D (2012b). Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies. Langmuir, 28(9): 4274–4282
|
110 |
Weaver J C, Morse D E (2003). Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc Res Tech, 62(4): 356–367
|
111 |
Weiner S (2006). Transient precursor strategy in mineral formation of bone. Bone, 39(3): 431–433
|
112 |
Weiner S (2008). Biomineralization: a structural perspective. J Struct Biol, 163(3): 229–234
|
113 |
Weiner S, Addadi L (1991). Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci, 16(7): 252–256
|
114 |
Wheeler E J, Lewis D (1977). An x-ray study of the paracrystalline nature of bone apatite. Calcif Tissue Res, 24(3): 243–248
|
115 |
Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336(6077): 61–64
|
116 |
Zeichner-David M, Diekwisch T, Fincham A, Lau E, MacDougall M, Moradian-Oldak J, Simmer J, Snead M, Slavkin H C (1995). Control of ameloblast differentiation. Int J Dev Biol, 39(1): 69–92
|
117 |
Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E (1999). Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionalities. Angew Chem Int Ed Engl, 38(6): 779–782
|
/
〈 | 〉 |