REVIEW

Biomineralization proteins: from vertebrates to bacteria

  • Lijun WANG ,
  • Marit NILSEN-HAMILTON
Expand
  • Ames Laboratory, U. S. Department of Energy, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA

Received date: 04 Jan 2012

Accepted date: 02 May 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Biomineralization processes are frequently found in nature. Living organisms use various strategies to create highly ordered and hierarchical mineral structures under physiologic conditions in which the temperatures and pressures are much lower than those required to form the same mineralized structures by chemical synthesis. Although the mechanism of biomineralization remains elusive, proteins have been found responsible for the formation of such mineral structures in many cases. These proteins are active components in the process of biomineralization. The mechanisms by which their function can vary from providing active organic matrices that control the formation of specific mineral structures to being catalysts that facilitate the crystallization of certain metal ions. This review summarizes the current understanding of the functions of several representative biomineralization proteins from vertebrates to bacteria in the hopes of providing useful insight and guidance for further elucidation of mechanisms of biomineralization processes in living organisms.

Cite this article

Lijun WANG , Marit NILSEN-HAMILTON . Biomineralization proteins: from vertebrates to bacteria[J]. Frontiers in Biology, 2013 , 8(2) : 234 -246 . DOI: 10.1007/s11515-012-1205-3

1
Addadi L, Weiner S (1985). Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA, 82(12): 4110–4114

DOI PMID

2
Aichmayer B, Margolis H C, Sigel R, Yamakoshi Y, Simmer J P, Fratzl P (2005). The onset of amelogenin nanosphere aggregation studied by small-angle X-ray scattering and dynamic light scattering. J Struct Biol, 151(3): 239–249

DOI PMID

3
Amemiya Y, Arakaki A, Staniland S S, Tanaka T, Matsunaga T (2007). Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials, 28(35): 5381–5389

DOI PMID

4
Arakaki A, Webb J, Matsunaga T (2003). A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem, 278(10): 8745–8750

DOI PMID

5
Balkwill D L, Maratea D, Blakemore R P (1980). Ultrastructure of a magnetotactic spirillum. J Bacteriol, 141(3): 1399–1408

PMID

6
Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2(3): 217–230

DOI PMID

7
Bell P E, Mills A L, Herman J S (1987). Biogeochemical donditions favoring magnetite formation during anaerobic iron reduction. Appl Environ Microbiol, 53(11): 2610–2616

PMID

8
Berthet-Colominas C, Miller A, White S W (1979). Structural study of the calcifying collagen in turkey leg tendons. J Mol Biol, 134(3): 431–445

DOI PMID

9
Blakemore R (1975). Magnetotactic bacteria. Science, 190(4212): 377–379

DOI PMID

10
Blakemore R P, Maratea D, Wolfe R S (1979). Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol, 140(2): 720–729

PMID

11
Bonucci E (2009). Calcification and silicification: a comparative survey of the early stages of biomineralization. J Bone Miner Metab, 27(3): 255–264

DOI PMID

12
Brinker C J, Scherrer G W (1990). Sol-gel science: the chemistry of sol-gel processing. New York: Academic Press

13
Brunner E, Gröger C, Lutz K, Richthammer P, Spinde K, Sumper M (2009). Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol, 84(4): 607–616

DOI PMID

14
Brutchey R L, Cheng G, Gu Q, Morse D E (2008). Positive temperature coefficient of resistivity in donor-doped BaTiO3 ceramics derived from nanocrystals synthesized at low temperature. Adv Mater, 20(5): 1029–1033

DOI

15
Brutchey R L, Morse D E (2006). Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew Chem Int Ed Engl, 45(39): 6564–6566

DOI PMID

16
Brutchey R L, Morse D E (2008). Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem Rev, 108(11): 4915–4934

DOI PMID

17
Cha J N, Shimizu K, Zhou Y, Christiansen S C, Chmelka B F, Stucky G D, Morse D E (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA, 96(2): 361–365

DOI PMID

18
Chen C L, Bromley K M, Moradian-Oldak J, DeYoreo J J (2011). In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly. J Am Chem Soc, 133(43): 17406–17413

DOI PMID

19
Cölfen H (2010). Biomineralization: A crystal-clear view. Nat Mater, 9(12): 960–961

DOI PMID

20
Cowan P M, McGavin S, North A C T (1955). The polypeptide chain configuration of collagen. Nature, 176(4492): 1062–1064

DOI PMID

21
Crookes-Goodson W J, Slocik J M, Naik R R (2008). Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev, 37(11): 2403–2412

DOI PMID

22
Daculsi G, Kerebel B (1978). High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. J Ultrastruct Res, 65(2): 163–172

DOI PMID

23
Dey A, Bomans P H H, Müller F A, Will J, Frederik P M, de With G, Sommerdijk N A J M (2010). The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater, 9(12): 1010–1014

DOI PMID

24
Diekwisch T G H, Berman B J, Gentner S, Slavkin H C (1995). Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res, 279(1): 149–167

DOI PMID

25
Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005a). Corrections and clarifications. Science, 309(5744): 2166

DOI PMID

26
Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J (2005b). Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science, 307(5714): 1450–1454

DOI PMID

27
Dugdale R C, Wilkerson F P (1998). Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 391(6664): 270–273

DOI

28
Dunin-Borkowski R E, McCartney M R, Frankel R B, Bazylinski D A, Pósfai M, Buseck P R (1998). Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 282(5395): 1868–1870

DOI PMID

29
Eastoe J E (1979). Enamel protein chemistry—past, present and future. J Dent Res, 58(Spec Issue B suppl): 753–764

DOI PMID

30
Evans J W, Thiel P A (2010). Chemistry. A little chemistry helps the big get bigger. Science, 330(6004): 599–600

DOI PMID

31
Faivre D, Böttger L H, Matzanke B F, Schüler D (2007). Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Ed Engl, 46(44): 8495–8499

DOI PMID

32
Faivre D, Schüler D (2008). Magnetotactic bacteria and magnetosomes. Chem Rev, 108(11): 4875–4898

DOI PMID

33
Falciatore A, Bowler C (2002). Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol, 53(1): 109–130

DOI PMID

34
Fincham A G, Leung W, Tan J and Moradian-Oldak J (1998). Does amelogenin nanosphere assembly proceed through intermediary-sized structures? Connect Tissue Res, 38(1–4): 237–240; discussion 241–236

35
Fincham A G, Moradian-Oldak J, Diekwisch T G, Lyaruu D M, Wright J T, Bringas P Jr, Slavkin H C (1995). Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol, 115(1): 50–59

DOI PMID

36
Fincham A G, Moradian-Oldak J, Simmer J P, Sarte P, Lau E C, Diekwisch T, Slavkin H C (1994). Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J Struct Biol, 112(2): 103–109

DOI PMID

37
Frankel R B, Bazylinski D A, Johnson M S, Taylor B L (1997). Magneto-aerotaxis in marine coccoid bacteria. Biophys J, 73(2): 994–1000

DOI PMID

38
Frankel R B, Blakemore R P, Wolfe R S (1979). Magnetite in freshwater magnetotactic bacteria. Science, 203(4387): 1355–1356

DOI PMID

39
Friddle R W, Battle K, Trubetskoy V, Tao J, Salter E A, Moradian-Oldak J, De Yoreo J J, Wierzbicki A (2011). Single-molecule determination of the face-specific adsorption of Amelogenin’s C-terminus on hydroxyapatite. Angew Chem Int Ed Engl, 50(33): 7541–7545

DOI PMID

40
Glimcher M J (1959). Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys, 31(2): 359–393

DOI

41
Glimcher M J, Bonar L C, Grynpas M D, Landis W J, Roufosse A H (1981). Recent studies of bone mineral: Is the amorphous calcium phosphate theory valid? J Cryst Growth, 53(1): 100–119

DOI

42
Gorby Y A, Beveridge T J, Blakemore R P (1988). Characterization of the bacterial magnetosome membrane. J Bacteriol, 170(2): 834–841

PMID

43
Gorski J P (1992). Acidic phosphoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcif Tissue Int, 50(5): 391–396

DOI PMID

44
Gower L B (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev, 108(11): 4551–4627

DOI PMID

45
Grynpas M D, Omelon S (2007). Transient precursor strategy or very small biological apatite crystals? Bone, 41(2): 162–164

DOI PMID

46
Hildebrand M (2003). Biological processing of nanostructured silica in diatoms. Prog Org Coat, 47(3–4): 256–266

DOI

47
Hildebrand M (2008). Diatoms, biomineralization processes, and genomics. Chem Rev, 108(11): 4855–4874

DOI PMID

48
Hodge A, Petruska J (1963). Aspects of Protein Structure. New York: Academic Press

49
Hulmes D J, Wess T J, Prockop D J, Fratzl P (1995). Radial packing, order, and disorder in collagen fibrils. Biophys J, 68(5): 1661–1670

DOI PMID

50
Kaluzhnaya O, Belikova A, Podolskaya E, Krasko A, Müller W, Belikov S (2007). Identification of silicateins in freshwater sponge Lubomirskia baicalensis. Mol Biol, 41(4): 554–561

DOI

51
Katz E P, Li S T (1973). Structure and function of bone collagen fibrils. J Mol Biol, 80(1): 1–15

DOI PMID

52
Kisailus D, Truong Q, Amemiya Y, Weaver J C, Morse D E (2006). Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc Natl Acad Sci USA, 103(15): 5652–5657

DOI PMID

53
Komeili A (2007). Molecular mechanisms of magnetosome formation. Annu Rev Biochem, 76(1): 351–366

DOI PMID

54
Komeili A (2012). Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev, 36(1): 232–255

DOI PMID

55
Krasko A, Lorenz B, Batel R, Schröder H C, Müller I M, Müller W E G (2000). Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem, 267(15): 4878–4887

DOI PMID

56
Krasko A, Schröder H C, Batel R, Grebenjuk V A, Steffen R, Müller I M, Müller W E G (2002). Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula. DNA Cell Biol, 21(1): 67–80

DOI PMID

57
Kröger N, Poulsen N (2008). Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet, 42(1): 83–107

DOI PMID

58
Landis W J, Silver F H (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs, 189(1–4): 20–24

DOI PMID

59
Levi C, Barton J L, Guillemet C, Bras E, Lehuede P (1989). A remarkably strong natural glassy rod: the anchoring spicule of the Monorhaphis sponge. J Mater Sci Lett, 8(3): 337–339

DOI

60
Mahamid J, Aichmayer B, Shimoni E, Ziblat R, Li C, Siegel S, Paris O, Fratzl P, Weiner S, Addadi L (2010). Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA, 107(14): 6316–6321

DOI PMID

61
Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007). Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. ChemBioChem, 8(14): 1729–1735

DOI PMID

62
Matsunaga T, Okamura Y, Fukuda Y, Wahyudi A T, Murase Y, Takeyama H (2005). Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res, 12(3): 157–166

DOI PMID

63
Miller A and Parker S B (1984). Collagen: The organic matrix of bone. Philos Trans R Soc, B 304(1121): 455–477

64
Moradian-Oldak J (2001). Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol, 20(5-6): 293–305

DOI PMID

65
Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N (2002). Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal. Matrix Biol, 21(2): 197–205

DOI PMID

66
Moradian-Oldak J, Du C, Falini G (2006). On the formation of amelogenin microribbons. Eur J Oral Sci, 114(s1 Suppl 1): 289–296, discussion 327–329, 382

DOI PMID

67
Moradian-Oldak J, Jimenez I, Maltby D, Fincham A G (2001). Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions. Biopolymers, 58(7): 606–616

DOI PMID

68
Moradian-Oldak J, Paine M L, Lei Y P, Fincham A G, Snead M L (2000). Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol, 131(1): 27–37

DOI PMID

69
Müller W E G, Boreiko A, Schlossmacher U, Wang X, Tahir M N, Tremel W, Brandt D, Kaandorp J A, Schröder H C (2007). Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials, 28(30): 4501–4511

DOI PMID

70
Murat D, Byrne M, Komeili A (2010a). Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol, 2(10): a000422

DOI PMID

71
Murat D, Quinlan A, Vali H, Komeili A (2010b). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA, 107(12): 5593–5598

DOI PMID

72
Murr M M, Morse D E (2005). Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA, 102(33): 11657–11662

DOI PMID

73
Nies D H (2011). How iron is transported into magnetosomes. Mol Microbiol, 82(4): 792–796

DOI PMID

74
Nudelman F, Pieterse K, George A, Bomans P H, Friedrich H, Brylka L J, Hilbers P A, de With G, Sommerdijk N A (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater, 9(12): 1004–1009

DOI PMID

75
Ofer S, Nowik I, Bauminger E R, Papaefthymiou G C, Frankel R B, Blakemore R P (1984). Magnetosome dynamics in magnetotactic bacteria. Biophys J, 46(1): 57–64

DOI PMID

76
Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y-Y, Kaufman M J, Douglas E P and Gower L B (2007). Bone structure and formation: A new perspective. Mater Sci Eng, R 58(3–5): 77–116

77
Pascal J L, Clementine G, Jacques L, Thibaud C (2005). Mimicking biogenic silica nanostructures formation. Curr Nanosci, 1(1): 73–83

DOI

78
Penninga I, de Waard H, Moskowitz B M, Bazylinski D A, Frankel R B (1995). Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. J Magn Magn Mater, 149(3): 279–286

DOI

79
Piez K A (1965). Characterization of a collagen from codfish skin containing three chromatographically different α chains. Biochemistry, 4(12): 2590–2596

DOI PMID

80
Piez K A, Lewis M S, Martin G R, Gross J (1961). Subunits of the collagen molecule. Biochim Biophys Acta, 53(3): 596–598

DOI PMID

81
Posner A S, Betts F (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res, 8(8): 273– 281

DOI

82
Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi A M, Raheli F, Benatti U, Müller W E G, Giovine M (2004). Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Mar Biotechnol (NY), 6(6): 594–603

DOI PMID

83
Prozorov T, Mallapragada S, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams T, Bazylinski D, Prozorov R, Canfield P (2007a). Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater, 17(6): 951–957

DOI

84
Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada S K, Narasimhan B, Canfield P C, Prozorov R (2007b). Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano, 1(3): 228–233

DOI PMID

85
Rabuffetti F A, Lee J S, Brutchey R L (2012). Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals. Adv Mater, 24(11): 1434–1438

DOI PMID

86
Ramachandran G N, Kartha G (1955). Structure of collagen. Nature, 176(4482): 593–595

DOI PMID

87
Rich A, Crick F H C (1955). The structure of collagen. Nature, 176(4489): 915–916

DOI PMID

88
Richter M, Kube M, Bazylinski D A, Lombardot T, Glöckner F O, Reinhardt R, Schüler D (2007). Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol, 189(13): 4899–4910

DOI PMID

89
Schröder H C, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller I M, Müller W E G (2004a). Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J, 381(Pt 3): 665–673

DOI PMID

90
Schröder H C, Perović-Ottstadt S, Wiens M, Batel R, Müller I M, Müller W E (2004b). Differentiation capacity of epithelial cells in the sponge Suberites domuncula. Cell Tissue Res, 316(2): 271–280

DOI PMID

91
Schüler D (2008). Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev, 32(4): 654–672

DOI PMID

92
Shaw W J, Campbell A A, Paine M L, Snead M L (2004). The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface. J Biol Chem, 279(39): 40263–40266

DOI PMID

93
Shimizu K, Cha J, Stucky G D, Morse D E (1998). Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA, 95(11): 6234–6238

DOI PMID

94
Simmer J P, Fincham A G (1995). Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med, 6(2): 84–108

DOI PMID

95
Simpson T L (1984). The cell biology of sponges. New York: Springer Publishing

96
Staniland S, Ward B, Harrison A, van der Laan G, Telling N (2007). Rapid magnetosome formation shown by real-time X-ray magnetic circular dichroism. Proc Natl Acad Sci USA, 104(49): 19524–19528

DOI PMID

97
Stöber W, Fink A, Bohn E (1968). Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci, 26(1): 62–69

DOI

98
Sumper M, Brunner E (2006). Learning from diatoms: Nature's tools for the production of nanostructured silica. Adv Funct Mater, 16(1): 17–26

DOI

99
Tacke R (1999). Milestones in the biochemistry of silicon: From basic research to biotechnological applications. Angew Chem Int Ed Engl, 38(20): 3015–3018

DOI PMID

100
Tanaka M, Mazuyama E, Arakaki A, Matsunaga T (2011). MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J Biol Chem, 286(8): 6386–6392

DOI PMID

101
Tarasevich B J, Lea S, Bernt W, Engelhard M, Shaw W J (2009). Adsorption of amelogenin onto self-assembled and fluoroapatite surfaces. J Phys Chem B, 113(7): 1833–1842

DOI PMID

102
Tarasevich B J, Lea S, Shaw W J (2010). The leucine rich amelogenin protein (LRAP) adsorbs as monomers or dimers onto surfaces. J Struct Biol, 169(3): 266–276

DOI PMID

103
Termine J D, Kleinman H K, Whitson S W, Conn K M, McGarvey M L, Martin G R (1981). Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 26(1 Pt 1): 99–105

DOI PMID

104
Termine J D, Posner A S (1966). Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science, 153(3743): 1523–1525

DOI PMID

105
Thiel P A, Shen M, Liu D J, Evans J W (2009). Coarsening of two-dimensional nanoclusters on metal surfaces. J Phys Chem C, 113(13): 5047–5067

DOI

106
Traub W, Arad T, Weiner S (1989). Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA, 86(24): 9822–9826

DOI PMID

107
Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E, Plitzko J M, Zarivach R, Kasama T, Wanner G, Pósfai M, Böttger L, Matzanke B, Schüler D (2011). The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol Microbiol, 82(4): 818–835

DOI PMID

108
Wang L, Prozorov T, Palo P E, Liu X, Vaknin D, Prozorov R, Mallapragada S, Nilsen-Hamilton M (2012a). Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules, 13(1): 98– 105

DOI PMID

109
Wang W, Bu W, Wang L, Palo P E, Mallapragada S, Nilsen-Hamilton M, Vaknin D (2012b). Interfacial properties and iron binding to bacterial proteins that promote the growth of magnetite nanocrystals: X-ray reflectivity and surface spectroscopy studies. Langmuir, 28(9): 4274–4282

DOI PMID

110
Weaver J C, Morse D E (2003). Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc Res Tech, 62(4): 356–367

DOI PMID

111
Weiner S (2006). Transient precursor strategy in mineral formation of bone. Bone, 39(3): 431–433

DOI PMID

112
Weiner S (2008). Biomineralization: a structural perspective. J Struct Biol, 163(3): 229–234

DOI PMID

113
Weiner S, Addadi L (1991). Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci, 16(7): 252–256

DOI PMID

114
Wheeler E J, Lewis D (1977). An x-ray study of the paracrystalline nature of bone apatite. Calcif Tissue Res, 24(3): 243–248

DOI PMID

115
Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336(6077): 61–64

DOI PMID

116
Zeichner-David M, Diekwisch T, Fincham A, Lau E, MacDougall M, Moradian-Oldak J, Simmer J, Snead M, Slavkin H C (1995). Control of ameloblast differentiation. Int J Dev Biol, 39(1): 69–92

PMID

117
Zhou Y, Shimizu K, Cha J N, Stucky G D, Morse D E (1999). Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionalities. Angew Chem Int Ed Engl, 38(6): 779–782

DOI

Outlines

/