REVIEW

Histone mimics: digging down under

  • Yiwei LIN ,
  • Binhua P. ZHOU
Expand
  • Departments of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA

Received date: 05 Feb 2012

Accepted date: 20 Mar 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Epigenetic deregulation is intimately associated with the development of human diseases. Intensive studies are currently underway to clarify the mechanism for the sake of achieving ideal diagnostic and therapeutic goals. It has been demonstrated that enzymes with histone-modifying activities can also target non-histone proteins, with the underlying mechanism remaining obscure. In this review, we focus on a novel histone mimicry strategy that may be wildly adapted during the non-histone substrate recognition process. Its potential clinical implications are also discussed.

Cite this article

Yiwei LIN , Binhua P. ZHOU . Histone mimics: digging down under[J]. Frontiers in Biology, 2013 , 8(2) : 228 -233 . DOI: 10.1007/s11515-012-1211-5

1
Adcock I M, Ito K, Barnes P J (2005). Histone deacetylation: an important mechanism in inflammatory lung diseases. COPD, 2(4): 445-455

DOI PMID

2
Arents G, Burlingame R W, Wang B C, Love W E, Moudrianakis E N (1991). The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci USA, 88(22): 10148-10152

DOI PMID

3
Arents G, Moudrianakis E N (1995). The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc Natl Acad Sci USA, 92(24): 11170-11174

DOI PMID

4
Baron R, Binda C, Tortorici M, McCammon J A, Mattevi A (2011). Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex. Structure, 19(2): 212-220

DOI PMID

5
Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2(2): 84-89

DOI PMID

6
Baxevanis A D, Arents G, Moudrianakis E N, Landsman D (1995). A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res, 23(14): 2685-2691

DOI PMID

7
Cano A, Pérez-Moreno M A, Rodrigo I, Locascio A, Blanco M J, del Barrio M G, Portillo F, Nieto M A (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2(2): 76-83

DOI PMID

8
Chan D W, Wang Y, Wu M, Wong J, Qin J, Zhao Y (2009). Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics, 9(9): 2343-2354

DOI PMID

9
Chang Y, Ganesh T, Horton J R, Spannhoff A, Liu J, Sun A, Zhang X, Bedford M T, Shinkai Y, Snyder J P, Cheng X (2010). Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J Mol Biol, 400(1): 1-7

DOI PMID

10
Egger G, Liang G, Aparicio A, Jones P A (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990): 457-463

DOI PMID

11
Egorova K S, Olenkina O M, Olenina L V (2010). Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Mosc), 75(5): 535-548

DOI PMID

12
Elsässer S J, Allis C D, Lewis P W (2011). Cancer. New epigenetic drivers of cancers. Science, 331(6021): 1145-1146

DOI PMID

13
Esteller M (2008). Epigenetics in cancer. N Engl J Med, 358(11): 1148-1159

DOI PMID

14
Feinberg A P, Vogelstein B (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301(5895): 89-92

DOI PMID

15
Henkels C H, Khorasanizadeh S (2007). Implications of a histone code mimic in epigenetic signaling. Mol Cell, 27(4): 521-522

DOI PMID

16
Issa J P, Kantarjian H M, Kirkpatrick P (2005). Azacitidine. Nat Rev Drug Discov, 4(4): 275-276

DOI PMID

17
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074-1080

DOI PMID

18
Jeyaprakash A A, Basquin C, Jayachandran U, Conti E (2011). Structural basis for the recognition of phosphorylated histone h3 by the survivin subunit of the chromosomal passenger complex. Structure, 19(11): 1625-1634

DOI PMID

19
Jiao Y, Shi C, Edil B H, de Wilde R F, Klimstra D S, Maitra A, Schulick R D, Tang L H, Wolfgang C L, Choti M A, Velculescu V E, Diaz L A Jr, Vogelstein B, Kinzler K W, Hruban R H, Papadopoulos N (2011). DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science, 331(6021): 1199-1203

DOI PMID

20
Jones P A, Baylin S B (2007). The epigenomics of cancer. Cell, 128(4): 683-692

DOI PMID

21
Kayne P S, Kim U J, Han M, Mullen J R, Yoshizaki F, Grunstein M (1988). Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell, 55(1): 27-39

DOI PMID

22
Kelly A E, Ghenoiu C, Xue J Z, Zierhut C, Kimura H, Funabiki H (2010b). Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science, 330(6001): 235-239

DOI PMID

23
Kelly T K, De Carvalho D D, Jones P A (2010a). Epigenetic modifications as therapeutic targets. Nat Biotechnol, 28(10): 1069-1078

DOI PMID

24
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693-705

DOI PMID

25
Lee Y H, Stallcup M R (2009). Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol, 23(4): 425-433

DOI PMID

26
Lim S, Janzer A, Becker A, Zimmer A, Schüle R, Buettner R, Kirfel J (2010). Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis, 31(3): 512-520

DOI PMID

27
Lin Y, Wu Y, Li J, Dong C, Ye X, Chi Y I, Evers B M, Zhou B P (2010). The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J, 29(11): 1803-1816

DOI PMID

28
Marks P A, Breslow R (2007). Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol, 25(1): 84-90

DOI PMID

29
Morgunkova A, Barlev N A (2006). Lysine methylation goes global. Cell Cycle, 5(12): 1308-1312

DOI PMID

30
Nicodeme E, Jeffrey K L, Schaefer U, Beinke S, Dewell S, Chung C W, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice C M, Lora J M, Prinjha R K, Lee K, Tarakhovsky A (2010). Suppression of inflammation by a synthetic histone mimic. Nature, 468(7327): 1119-1123

DOI PMID

31
Nieto M A (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol, 3(3): 155-166

DOI PMID

32
Peng L, Seto E (2011). Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb Exp Pharmacol, 206: 39-56

DOI PMID

33
Rodenhiser D, Mann M (2006). Epigenetics and human disease: translating basic biology into clinical applications. CMAJ, 174(3): 341-348

DOI PMID

34
Ruchaud S, Carmena M, Earnshaw W C (2007). Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol, 8(10): 798-812

DOI PMID

35
Sampath S C, Marazzi I, Yap K L, Sampath S C, Krutchinsky A N, Mecklenbräuker I, Viale A, Rudensky E, Zhou M M, Chait B T, Tarakhovsky A (2007). Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell, 27(4): 596-608

DOI PMID

36
Savagner P (2001). Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 23(10): 912-923

DOI PMID

37
Shi Y, Lan F, Matson C, Mulligan P, Whetstine J R, Cole P A, Casero R A, Shi Y (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119(7): 941-953

DOI PMID

38
Shima K, Nosho K, Baba Y, Cantor M, Meyerhardt J A, Giovannucci E L, Fuchs C S, Ogino S (2011). Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: Cohort study and literature review. Int J Cancer, 128(5): 1080-1094

DOI PMID

39
Shook D, Keller R (2003). Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev, 120(11): 1351-1383

DOI PMID

40
Singh B N, Zhang G, Hwa Y L, Li J, Dowdy S C, Jiang S W (2010). Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther, 10(6): 935-954

DOI PMID

41
Spannhoff A, Hauser A T, Heinke R, Sippl W, Jung M (2009). The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem, 4(10): 1568-1582

DOI PMID

42
Tarakhovsky A (2010). Tools and landscapes of epigenetics. Nat Immunol, 11(7): 565-568

DOI PMID

43
Thiery J P (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2(6): 442-454

DOI PMID

44
Thiery J P, Acloque H, Huang R Y, Nieto M A (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5): 871-890

DOI PMID

45
Turner B M (2007). Defining an epigenetic code. Nat Cell Biol, 9(1): 2-6

DOI PMID

46
Urdinguio R G, Sanchez-Mut J V, Esteller M (2009). Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol, 8(11): 1056-1072

DOI PMID

47
Villeneuve L M, Natarajan R (2010). The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol, 299(1): F14-F25

DOI PMID

48
Waddington C H (2011). The Epigenotype. Int J Epidemiol, online available December 20, 2011

49
Wang Y, Fischle W, Cheung W, Jacobs S, Khorasanizadeh S (2004). Beyond the double helix: writing and reading the histone code. Novartis Found Symp, 259: 3-17

50
Yang J, Weinberg R A (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 14(6): 818-829

DOI PMID

51
Yoo C B, Jones P A (2006). Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov, 5(1): 37-50

DOI PMID

52
Zhou B P, Deng J, Xia W, Xu J, Li Y M, Gunduz M, Hung M C (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol, 6(10): 931-940

DOI PMID

Outlines

/