REVIEW

The adaptive value of increasing pulse repetition rate during hunting by echolocating bats

  • Philip H.-S. JEN
Expand
  • Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA

Received date: 24 Feb 2012

Accepted date: 12 Mar 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

During hunting, bats of suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes with their highly developed auditory system to extract the information about insects or obstacles. These bats progressively shorten the duration, lower the frequency, decrease the intensity and increase the repetition rate of emitted pulses as they search, approach, and finally intercept insects or negotiate obstacles. This dynamic variation in multiple parameters of emitted pulses predicts that analysis of an echo parameter by the bat would be inevitably affected by other co-varying echo parameters. The progressive increase in the pulse repetition rate throughout the entire course of hunting would presumably enable the bat to extract maximal information from the increasing number of echoes about the rapid changes in the target or obstacle position for successful hunting. However, the increase in pulse repetition rate may make it difficult to produce intense short pulse at high repetition rate at the end of long-held breath. The increase in pulse repetition rate may also make it difficult to produce high frequency pulse due to the inability of the bat laryngeal muscles to reach its full extent of each contraction and relaxation cycle at a high repetition rate. In addition, the increase in pulse repetition rate increases the minimum threshold (i.e. decrease auditory sensitivity) and the response latency of auditory neurons. In spite of these seemingly physiological disadvantages in pulse emission and auditory sensitivity, these bats do progressively increase pulse repetition rate throughout a target approaching sequence. Then, what is the adaptive value of increasing pulse repetition rate during echolocation? What are the underlying mechanisms for obtaining maximal information about the target features during increasing pulse repetition rate? This article reviews the electrophysiological studies of the effect of pulse repetition rate on multiple-parametric selectivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus using single repetitive sound pulses and temporally patterned trains of sound pulses. These studies show that increasing pulse repetition rate improves multiple-parametric selectivity of inferior collicular neurons. Conceivably, this improvement of multiple-parametric selectivity of collicular neurons with increasing pulse repetition rate may serve as the underlying mechanisms for obtaining maximal information about the prey features for successful hunting by bats.

Cite this article

Philip H.-S. JEN . The adaptive value of increasing pulse repetition rate during hunting by echolocating bats[J]. Frontiers in Biology, 2013 , 8(2) : 198 -215 . DOI: 10.1007/s11515-012-1212-4

Acknowledgments

The research works described in this review article have been supported by the National Science Foundation and National Institute of Health of USA, Human Frontier Science Program of International Brain Research Organization, the Research Board, Research Council, College of Arts and Sciences, and Division of Biologic Sciences of University of Missouri-Columbia, USA. I particularly like to express my sincere thanks to my former coworkers in participation of all the studies described in this review. They are Drs, Qi-Cai Chen, Rui-Ben Feng, Tsutomu Kamada, Erika Hou, Ruihong Luan, Toshio Moriyama, Danial Pinheiro, Peter Schlegel, Xinde Sun, Haibing Teng, Min Wu, Chung Hsin Wu, Ji Ping Zhang and Xiaoming Zhou.
1
Bormann J (1988). Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci, 11(3): 112–116

DOI PMID

2
Bormann J (2000). The ‘ABC’ of GABA receptors. Trends Pharmacol Sci, 21(1): 16–19

DOI PMID

3
Brand A, Urban R, Grothe B (2000). Duration tuning in the mouse auditory midbrain. J Neurophysiol, 84(4): 1790–1799

PMID

4
Brosch M, Schreiner C E (1997). Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol, 77(2): 923–943

PMID

5
Calford M B, Semple M N (1995). Monaural inhibition in cat auditory cortex. J Neurophysiol, 73(5): 1876–1891

PMID

6
Casseday J H, Covey E (1995). Mechanisms for analysis of auditory temporal patterns in the brainstem of echolocating bats. In: Covey E, Hawkins HL, Port RF (eds). Neural representation of temporal patterns. Plenum, New York, pp 25–51

7
Casseday J H, Ehrlich D, Covey E (1994). Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science, 264(5160): 847–850

DOI PMID

8
Casseday J H, Ehrlich D, Covey E (2000). Neural measurement of sound duration: control by excitatory-inhibitory interactions in the inferior colliculus. J Neurophysiol, 84(3): 1475–1487

PMID

9
Chen G D (1998). Effects of stimulus duration on responses of neurons in the chinchilla inferior colliculus. Hear Res, 122(1-2): 142–150

DOI PMID

10
Chen Q C, Jen P H S (1994). Pulse repetition rate increases the minimum threshold and latency of auditory neurons. Brain Res, 654(1): 155–158

DOI PMID

11
Condon C J, White K R, Feng A S (1994). Processing of amplitude-modulated signals that mimic echoes from fluttering targets in the inferior colliculus of the little brown bat, Myotis lucifugus. J Neurophysiol, 71(2): 768–784

PMID

12
Cooper J R, Bloom F E, Roth R H (1982). The Biomedical Basis of Neuropharmacology, New York: Oxford University Press

13
Covey E, Casseday J H (1995). The lower brainstem auditory pathways. In: Popper A N, Fay R R (Eds.), Springer handbook of Auditory Research V5 Hearing by Bats. New York: Springer, pp 235–295

14
Covey E, Casseday J H (1999). Timing in the auditory system of the bat. Annu Rev Physiol, 61(1): 457–476

DOI PMID

15
de Ribaupierre F, Goldstein M H Jr, Yeni-Komshian G (1972). Cortical coding of repetitive acoustic pulses. Brain Res, 48: 205–225

DOI PMID

16
Ehrlich D, Casseday J H, Covey E (1997). Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Neurophysiol, 77(5): 2360–2372

PMID

17
Faingold C L, Boersma Anderson C A, Caspary D M (1991). Involvement of GABA in acoustically-evoked inhibition in inferior colliculus neurons. Hear Res, 52(1): 201–216

DOI PMID

18
Faure P A, Fremouw T, Casseday J H, Covey E (2003). Temporal masking reveals properties of sound-evoked inhibition in duration-tuned neurons of the inferior colliculus. J Neurosci, 23(7): 3052–3065

PMID

19
Feng A S, Condon C J, White K R (1994). Stroboscopic hearing as a mechanism for prey discrimination in frequency-modulated bats? J Acoust Soc Am, 95(5): 2736–2744

DOI PMID

20
Feng A S, Hall J C, Gooler D M (1990). Neural basis of sound pattern recognition in anurans. Prog Neurobiol, 34(4): 313–329

DOI PMID

21
Freyman R L, Clifton R K, Litovsky R Y (1991). Dynamic processes in the precedence effect. J Acoust Soc Am, 90(2): 874–884

DOI PMID

22
Fubara B M, Casseday J H, Covey E, Schwartz-Bloom R D (1996). Distribution of GABAA, GABAB, and glycine receptors in the central auditory system of the big brown bat, Eptesicus fuscus. J Comp Neurol, 369(1): 83–92

DOI PMID

23
Fuzessery Z M, Hall J C (1996). Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. J Neurophysiol, 76(2): 1059–1073

PMID

24
Fuzessery Z M, Hall J C (1999). Sound duration selectivity in the pallid bat inferior colliculus. Hear Res, 137(1-2): 137–154

DOI PMID

25
Fuzessery Z M, Pollak G D (1985). Determinants of sound location selectivity in bat inferior colliculus: a combined dichotic and free-field stimulation study. J Neurophysiol, 54(4): 757–781

PMID

26
Galarreta M, Hestrin S (1998). Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat Neurosci, 1(7): 587–594

DOI PMID

27
Galazyuk A V, Feng A S (1997). Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 180(4): 301–311

DOI PMID

28
Galazyuk A V, Llano D, Feng A S (2000). Temporal dynamics of acoustic stimuli enhance amplitude tuning of inferior colliculus neurons. J Neurophysiol, 83(1): 128–138

PMID

29
Glendenning K K, Baker B N, Hutson K A, Masterton R B (1992). Acoustic chiasm V: inhibition and excitation in the ipsilateral and contralateral projections of LSO. J Comp Neurol, 319(1): 100–122

DOI PMID

30
Gooler D M, Feng A S (1992). Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. J Neurophysiol, 67(1): 1–22

PMID

31
Griffin D R (1958) Listening in the Dark. Yale University Press, New Haven, CT (reprinted by Comstock, Ithaca, 1986

32
Grinnell A D (1963). The neurophysiology of audition in bats: directional localization and binaural. J Physiol, (Lond) 167: 97–113

33
Grinnell A D, Grinnell V S (1965). Neural correlates of vertical localization by echolocating bats. J Physiol, (Lond) 181:830–851

34
Grothe B, Covey E, Casseday J H (1996). Spatial tuning of neurons in the inferior colliculus of the big brown bat: effects of sound level, stimulus type and multiple sound sources. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 179(1): 89–102

DOI PMID

35
Harnischfeger G, Neuweiler G, Schlegel P (1985). Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Molossus ater. J Neurophysiol, 53(1): 89–109

PMID

36
Hartley D J (1992a). Stabilization of perceived echo amplitudes in echolocating bats. I. Echo detection and automatic gain control in the big brown bat, Eptesicus fuscus, and the fishing bat, Noctilio leporinus. J Acoust Soc Am, 91(2): 1120–1132

DOI PMID

37
Hartley D J (1992b). Stabilization of perceived echo amplitudes in echolocating bats. II. The acoustic behavior of the big brown bat, Eptesicus fuscus, when tracking moving prey. J Acoust Soc Am, 91(2): 1133–1149

DOI PMID

38
He J F, Hashikawa T, Ojima H, Kinouchi Y (1997). Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci, 17(7): 2615–2625

PMID

39
Henson O W Jr (1965). The Activity and Function of the Middle Ear Muscles in Eecholocating Bats. J Physiol, (London) 180: 871–887

40
Henson O W Jr (1970). The ear and audition. In: Biology of bats, Vol. II (ed. W.A. Wimsatt),pp. 181–264. New York: Academic Press

41
Hiryu S, Hagino T, Riquimaroux H, Watanabe Y (2007). Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. J Acoust Soc Am, 121(3): 1749–1757

DOI PMID

42
Hocherman S, Gilat E (1981). Dependence of auditory cortex evoked unit activity on interstimulus interval in the cat. J Neurophysiol, 45(6): 987–997

PMID

43
Hou T T, Wu M, Jen P H S (1992). Pulse repetition rate and duration affect the responses of bat auditory cortical neurons. Chin J Physiol, 35(4): 259–278

PMID

44
Jen P H S (1980). Coding of directional information by single neurones in the S-segment of the FM bat, Myotis lucifugus. J Exp Biol, 87: 203–216

PMID

45
Jen P H S, Chen Q C (1998). The effect of pulse repetition rate, pulse intensity, and bicuculline on the minimum threshold and latency of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 182(4): 455–465

DOI PMID

46
Jen P H S, Feng R, Chen B (2003). GABAergic inhibition and the effect of sound direction on rate-intensity functions of inferior collicular neurons of the big brown Bat, Eptesicus fuscus. Chin J Physiol, 46(2): 83–90

PMID

47
Jen P H S, Feng R B (1999). Bicuculline application affects discharge pattern and pulse-duration tuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 184(2): 185–194

DOI PMID

48
Jen P H S, Hou T T, Wu M (1993). Neurons in the inferior colliculus, auditory cortex and pontine nuclei of the FM bat, Eptesicus fucus respond to pulse repetition rate differently. Brain Res, 613(1): 152–155

DOI PMID

49
Jen P H S, Kamada T (1982). Analysis of orientation signals emitted by the CF-FM bat, Pteronotus parnellii parnellii and the FM bat, Eptesicus fuscus during avoidance of moving and stationary obstacles. J Comp Physiol, 148(3): 389–398

DOI

50
Jen P H S, Ostwald J, Suga N (1978). Electrophysiological properties of the acoustic middle ear and laryngeal muscles reflexes in the awake echolocating FM bats, Myotis lucifugus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 124(1): 61–73

DOI

51
Jen P H S, Schlegel P (1982). Auditory physiological properties of the neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol, 147(3): 351–363

DOI

52
Jen P H S, Suga N (1976). Coordinated activities of middle-ear and laryngeal muscles in echolocating bats. Science, 191(4230): 950–952

DOI PMID

53
Jen P H S, Sun X D (1984). Pinna orientation determines the maximal directional sensitivity of bat auditory neurons. Brain Res, 301(1): 157–161

DOI PMID

54
Jen P H S, Sun X D, Chen D M, Teng H B (1987). Auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Brain Res, 419(1-2): 7–18

DOI PMID

55
Jen P H S, Sun X D, Lin P J (1989). Frequency and space representation in the primary auditory cortex of the FM bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 165: 1–14

DOI

56
Jen P H S, Wu C H (2005). The role of GABAergic inhibition in shaping the response size and duration selectivity of bat inferior collicular neurons to sound pulses in rapid sequences. Hear Res, 202(1-2): 222–234

DOI PMID

57
Jen P H S, Wu C H, Luan R H, Zhou X M (2002). GABAergic inhibition contributes to pulse repetition rate-dependent frequency selectivity in the inferior colliculus of the big brown bat, Eptesicus fuscus. Brain Res, 948(1-2): 159–164

DOI PMID

58
Jen P H S, Wu M (1993). Directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, to sounds delivered from selected horizontal and vertical angles. Chin J Physiol, 36(1): 7–18

PMID

59
Jen P H S, Zhang J (2000). The role of GABAergic inhibition on direction-dependent sharpening of frequency tuning in bat inferior collicular neurons. Brain Res, 862(1-2): 127–137

DOI PMID

60
Jen P H S, Zhou X M (1999). Temporally patterned pulse trains affect duration tuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 185(5): 471–478

DOI PMID

61
Jen P H S, Zhou X M, Wu C H (2001). Temporally patterned pulse trains affect frequency tuning and intensity coding of inferior collicular neurons of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 187: 605–616

DOI

62
Kick S A, Simmons J A (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci, 4(11): 2725–2737

PMID

63
Klug A, Park T J, Pollak G D (1995). Glycine and GABA influence binaural processing in the inferior colliculus of the mustache bat. J Neurophysiol, 74(4): 1701–1713

PMID

64
Kobler J B, Wilson B S, Henson O W Jr, Bishop A L (1985). Echo intensity compensation by echolocating bats. Hear Res, 20(2): 99–108

DOI PMID

65
Koch U, Grothe B (1998). GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat. J Neurophysiol, 80(1): 71–82

PMID

66
Lawrence B D, Simmons J A (1982). Echolocation in bats: the external ear and perception of the vertical positions of targets. Science, 218(4571): 481–483

DOI PMID

67
Le Beau F E, Rees A, Malmierca M S (1996). Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J Neurophysiol, 75(2): 902–919

PMID

68
LeBeau F E, Malmierca M S, Rees A (2001). Iontophoresis in vivo demonstrates a key role for GABA(A) and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. J Neurosci, 21(18): 7303–7312

PMID

69
Litovsky R Y, Yin T C (1998). Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J Neurophysiol, 80(3): 1302–1316

PMID

70
Lu Y, Jen P H S (2001). GABAergic and glycinergic neural inhibition in excitatory frequency tuning of bat inferior collicular neurons. Exp Brain Res, 141(3): 331–339

DOI PMID

71
Lu Y, Jen P H S (2002). Interaction of excitation and inhibition in inferior collicular neurons of the big brown bat, Eptesicus fuscus. Hear Res, 169(1-2): 140–150

DOI PMID

72
Lu Y, Jen P H S, Wu M (1998). GABAergic disinhibition affects responses of bat inferior collicular neurons to temporally patterned sound pulses. J Neurophysiol, 79(5): 2303–2315

PMID

73
Lu Y, Jen P H S, Zheng Q Y (1997). GABAergic disinhibition changes the recovery cycle of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 181(4): 331–341

DOI PMID

74
Malmierca M S, Leergaard T B, Bajo V M, Bjaalie J G, Merchan M A (1998). Anatomic evidence of a 3-D mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. J Neurosci, 18: 10603–10618

PMID

75
Masters W M, Moffat A J M, Simmons J A (1985). Sonar tracking of horizontally moving targets by the big brown bat Eptesicus fuscus. Science, 228(4705): 1331–1333

DOI PMID

76
McAlpine D, Palmer A R (2002). Blocking GABAergic inhibition increases sensitivity to sound motion cues in the inferior colliculus. J Neurosci, 22(4): 1443–1453

PMID

77
Moriyama T, Hou T T, Wu M, Jen P H S (1994). Responses of inferior collicular neurons of the FM bat, Eptesicus fuscus, to pulse trains with varied pulse amplitudes. Hear Res, 79(1–2): 105–114

DOI PMID

78
Moriyama T, Wu M I, Jen P H S (1997). Responses of bat inferior collicular neurons to recorded echolocation pulse trains. Chin J Physiol, 40(1): 9–17

PMID

79
Narins P M, Capranica R R (1980). Neural adaptation for processing the two-tone call of the Puerto Rican tree frog, Eleuthereodactylus coqui. Brain Behav Evol, 18(1): 48–66

DOI

80
Novick A (1971). Echolocation in bats: some aspects of pulse design. Am Sci, 59(2): 198–209

PMID

81
Novick A, Griffin D R (1961). Laryngeal mechanisms in bats for the production of orientation sounds. J Exp Zool, 148(2): 125–145

DOI PMID

82
Oliver D L, Shneiderman A (1991). The anatomy of the inferior colliculus: a cellular basis for integration of monaural and binaural information. In: Altschuler R A, Bobbin R P, Clopton B M, Hoffmann D W (Eds), Neurobiology of Hearing pp195–222, New York: Raven

83
Oliver D L, Winer J A, Beckius G E, Saint Marie R L (1994). Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol, 340(1): 27–42

DOI PMID

84
Park T J, Pollak G D (1993). GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: implications for encoding sound location. J Neurosci, 13(5): 2050–2067

PMID

85
Park T J, Pollak G D (1994). Azimuthal receptive fields are shaped by GABAergic inhibition in the inferior colliculus of the mustache bat. J Neurophysiol, 72(3): 1080–1102

PMID

86
Pérez-González D, Malmierca M S, Moore J M, Hernández O, Covey E (2006). Duration selective neurons in the inferior colliculus of the rat: topographic distribution and relation of duration sensitivity to other response properties. J Neurophysiol, 95(2): 823–836

DOI PMID

87
Perkins K L, Wong R K (1997). The depolarizing GABA response. Can J Physiol Pharmacol, 75(5): 516–519

DOI PMID

88
Phillips D P, Hall S E, Hollett J L (1989). Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. J Acoust Soc Am, 85(6): 2537–2549

DOI PMID

89
Pinheiro A D, Wu M, Jen P H S (1991). Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 169(1): 69–85

DOI PMID

90
Popper A N, Fay R R (1995). Hearing by bats. New York: Springer

91
Rabow L E, Russek S J, Farb D H (1995). From ion currents to genomic analysis: recent advances in GABA-R research. Synapse, 21(3): 174–189

DOI

92
Roberts R C, Ribak C E (1987a). An electron microscopic study of GABAergic neurons and terminals in the central nucleus of the inferior colliculus of the rat. J Neurocytol, 16(3): 333–345

DOI PMID

93
Roberts R C, Ribak C E (1987b). GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J Comp Neurol, 258(2): 267–280

DOI PMID

94
Roverud R C (1989). A gating mechanism for sound pattern recognition is correlated with the temporal structure of echolocation sound in the rufous horseshoe bat. J Comp Physiol, 166(2): 243–249

DOI

95
Roverud R C, Grinnell A D (1985). Discrimination performance and echolocation signal integration requirements for target detection and distance discrimination in the CF/FM bat, Noctilio albiventris. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 156(4): 447–456

DOI

96
Saint Marie R L, Morest D K, Brandon C J (1989). The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hear Res, 42(1): 97–112

DOI PMID

97
Schlegel P A (1977). Directional coding by binaural brainstem units of the CF-FM bat Rhinolophus ferrumequinum. J Comp Physiol, 118(3): 327–352

DOI

98
Schlegel P A, Jen P H S, Singh S (1988). Auditory spatial sensitivity of inferior collicular neurons of echolocating bats. Brain Res, 456(1): 127–138

DOI PMID

99
Schnitzler H U, Grinnell A D (1977). Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum I. Directionality of sound emission. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 116(1): 51–61

DOI

100
Schnitzler H U, Henson O W (1980). Performance of airborne animal sonar systems. I. Microchiroptera. In: Busnel R-G, Fish JF (eds) Animal sonar systems. Plenum Press, New York,pp 109–182

101
Shannon R V, Zeng F G, Kamath V, Wygonski J, Ekelid M (1995). Speech recognition with primary temporal cues. Science (USA), 270: 303–304

102
Shimozawa T, Suga N, Hendler P, Schuetze S (1974). Directional sensitivity of echolocation system in bats producing frequency-modulated signals. J Exp Biol, 60(1): 53–69

PMID

103
Simmons J A, Fenton M B, O’Farrell M J (1979). Echolocation and pursuit of prey by bats. Science, 203(4375): 16–21

DOI PMID

104
Simmons J A, Kick S A, Lawrence B D, Hale C, Bard C, Escudie B (1983). Acuity of horizontal angle discrimination by the echolocatingbat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 153: 321–330

DOI

105
Simmons J A, Moffat A J, Masters W M (1992). Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am, 91(2): 1150–1163

DOI PMID

106
Smalling J M, Galazyuk A V, Feng A S (2001). Stimulation rate influences frequency tuning characteristics of inferior colliculus neurons in the little brown bat, Myotis lucifugus. Neuroreport, 12(16): 3539–3542

DOI PMID

107
Smotherman M, Metzner W (2003). Effects of echo intensity on Doppler-shift compensation behavior in horseshoe bats. J Neurophysiol, 89(2): 814–821

DOI PMID

108
Suga N (1964) Single unit activity in cochlear nucleus and inferior colliculus of echolocating bats. J Physiol, (Lond) 172:449–474

109
Suga N (1997) Parallel-hierarchical processing of complex sounds for specialized auditory function. In: Crocker MJ (Ed) Encyclopedia of Acoustics, New York, John Wiley & Sons, Inc. pp 1409–1418

110
Suga N, Jen P H S (1975). Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol, 62(2): 277–311

PMID

111
Suga N, Schlegel P (1972). Neural attenuation of responses to emitted sounds in echolocating bat. Science (USA), 177: 82–84

112
Suga N, Shimozawa T (1974). Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science, 183(130): 1211–1213 (USA)

DOI PMID

113
Suga N, Yan J, Zhang Y F (1998) The processing of species-specific complex sounds by the ascending and descending auditory systems. In Poon P, Bruggie J (Eds), Central Auditory Processing and Neural Modeling. New York: Plenum Press, pp 55–70

114
Sun X D, Jen P H S (1987). Pinna position affects the auditory space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Hear Res, 27(3): 207–219

DOI PMID

115
Surlykke A, Moss C F (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am, 108(5): 2419–2429

DOI PMID

116
Vater M, Habbicht H, Kössl M, Grothe B (1992). The functional role of GABA and glycine in monaural and binaural processing in the inferior colliculus of horseshoe bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 171(4): 541–553

DOI PMID

117
Wallach H, Newman E B, Rosenzweig M R (1949). The precedence effect in sound localization. Am J Psychol, 62(3): 315–336

DOI PMID

118
Wu C H, Jen P H S (2006a). GABA-mediated echo duration selectivity of inferior collicular neurons of Eptesicus fuscus, determined with single pulses and pulse-echo pairs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 192(9): 985–1002

DOI PMID

119
Wu C H, Jen P H S (2006b). The role of GABAergic inhibition in shaping duration selectivity of bat inferior collicular neurons determined with temporally patterned sound trains. Hear Res, 215(1–2): 56–66

DOI PMID

120
Wu C H, Jen P H S (2008). Echo frequency selectivity of duration-tuned inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs. Neuroscience, 156(4): 1028–1038

DOI PMID

121
Wu L G, Betz W J (1998). Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals. Biophys J, 74(6): 3003–3009

DOI PMID

122
Wu M, Hou E T T, Jen P H S (1996). Responses of bat inferior collicular and auditory cortical neurons to pulsatile amplitude modulated sound pulses. Chin J Physiol, 39(3): 1–7

PMID

123
Wu M, Jen P H S (1991). Encoding of acoustic stimulus intensity by inferior collicular neurons of the big brown bat, Eptesicus fuscus. Chin J Physiol, 34: 145–155

124
Wu M, Jen P H S (1995b). Directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with temporally varied sound pulses. Le Rhinolophe, 11: 75–81

125
Wu M, Jen P H S (1996). Temporally patterned sound pulses affect directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 179(3): 385–393

DOI

126
Wu M I, Jen P H S (1995a). Responses of pontine neurons of the big brown bat, Eptesicus fuscus, to temporally patterned sound pulses. Hear Res, 85(1-2): 155–168

DOI PMID

127
Yang L, Pollak G D, Resler C (1992). GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J Neurophysiol, 68(5): 1760–1774

PMID

128
Yost W A, Guzman S J (1996). Auditory processing of sound sources: Is there an echo in here? Curr Dir Psychol Sci, 5(4): 125–131

DOI

129
Yost W A, Soderquist D R (1984). The precedence effect: revisited. J Acoust Soc Am, 76(5): 1377–1383

DOI PMID

130
Zhang H, Xu J, Feng A S (1999). Effects of GABA-mediated inhibition on direction-dependent frequency tuning in the frog inferior colliculus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 184(1): 85–98

DOI PMID

131
Zhou X M, Jen P H S (2000). Neural inhibition sharpens auditory spatial sensitivity of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 186(4): 389–398

DOI

132
Zhou X M, Jen P H S (2001). The effect of sound intensity on duration-tuning characteristics of bat inferior collicular neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 187(1): 63–73

DOI PMID

133
Zhou X M, Jen P H S (2002a). The effect of sound duration on rate-amplitude functions of inferior collicular neurons in the big brown bat, Eptesicus fuscus. Hear Res, 166(1-2): 124–135

DOI PMID

134
Zhou X M, Jen P H S (2002b). The role of GABAergic inhibition in shaping directional selectivity of bat inferior collicular neurons determined with temporally patterned pulse trains. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 188(10): 815–826

DOI PMID

135
Zhou X M, Jen P H S (2003). The effect of bicuculline application on azimuth-dependent recovery cycle of inferior collicular neurons of the big brown bat, Eptesicus fuscus. Brain Res, 973(1): 131–141

DOI PMID

136
Zhou X M, Jen P H S (2004). Azimuth-dependent recovery cycle affects directional selectivity of bat inferior collicular neurons determined with sound pulses within a pulse train. Brain Res, 1019(1–2): 281–288

DOI PMID

137
Zhou X M, Jen P H S (2006). Duration selectivity of bat inferior collicular neurons improves with increasing pulse repetition rate. Chin J Physiol, 49(1): 46–55

PMID

138
Zucker R S (1989). Short-term synaptic plasticity. Annu Rev Neurosci, 12(1): 13–31

DOI PMID

139
Zurek P M (1980). The precedence effect and its possible role in the avoidance of interaural ambiguities. J Acoust Soc Am, 67(3): 953–964

DOI PMID

Outlines

/