Approaches in extracellular matrix engineering for determination of adhesion molecule mediated single cell function
Received date: 01 Dec 2011
Accepted date: 29 Dec 2011
Published date: 01 Feb 2013
Copyright
The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.
Key words: Extracellular matrix; integrins; biomaterials; natural polymers; peptide sequences; RGD
Chantal E. AYRES-SANDER , Anjelica L. GONZALEZ . Approaches in extracellular matrix engineering for determination of adhesion molecule mediated single cell function[J]. Frontiers in Biology, 2013 , 8(1) : 32 -49 . DOI: 10.1007/s11515-012-1199-x
1 |
Abraham L C, Dice J F, Finn P F, Mesires N T, Lee K, Kaplan D L (2007). Extracellular matrix remodeling—methods to quantify cell-matrix interactions. Biomaterials, 28(2): 151–161
|
2 |
Abu-Rub M T, Billiar K L, Van Es M H, Knight A, Rodriguez B J, Zeugolis D I, McMahon S, Windebank A J, Pandit A (2011). Nano-textured self-assembled aligned hydrogels promote directional neurite guidance and overcome inhibition by myelin associated glycoprotein. Soft Matter, 7(6): 2770–2781
|
3 |
Agrez M V, Bates R C, Boyd A W, Burns G F (1991). Arg-Gly-Asp-containing peptides expose novel collagen receptors on fibroblasts: implications for wound healing. Cell Regul, 2(12): 1035–1044
|
4 |
Alvarez-Perez M A, Guarino V, Cirillo V, Ambrosio L (2010). Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules, 11(9): 2238–2246
|
5 |
Andukuri A, Minor W P, Kushwaha M, Anderson J M, Jun H W, Jun H W (2010). Effect of endothelium mimicking self-assembled nanomatrices on cell adhesion and spreading of human endothelial cells and smooth muscle cells. Nanomedicine, 6(2): 289–297
|
6 |
Anselme K (2000). Osteoblast adhesion on biomaterials. Biomaterials, 21(7): 667–681
|
7 |
Ayres C E, Bowlin G L, Henderson S C, Taylor L, Shultz J, Alexander J, Telemeco T A, Simpson D G (2006). Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform. Biomaterials, 27(32): 5524–5534
|
8 |
Ayres C E, Bowlin G L, Pizinger R, Taylor L T, Keen C A, Simpson D G (2007). Incremental changes in anisotropy induce incremental changes in the material properties of electrospun scaffolds. Acta Biomater, 3(5): 651–661
|
9 |
Barbani N, Guerra G D, Cristallini C, Urciuoli P, Avvisati R, Sala A, Rosellini E (2011). Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. J Mater Sci Mater Med, (Epub ahead of print)
|
10 |
Barczyk M, Carracedo S, Gullberg D (2010). Integrins. Cell Tissue Res, 339(1): 269–280
|
11 |
Barnes C P, Sell S A, Boland E D, Simpson D G, Bowlin G L (2007). Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev, 59(14): 1413–1433
|
12 |
Barnhart E L, Lee K C, Keren K, Mogilner A, Theriot J A (2011). An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol, 9(5): e1001059
|
13 |
Béduer A, Vieu C, Arnauduc F, Sol J C, Loubinoux I, Vaysse L (2012). Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials, 33(2): 504–514
|
14 |
Benton G, Kleinman H K, Arnaoutova I (2011). Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. International Journal of Cancer, 128(8):1751– 1757
|
15 |
Berndt P, Fields G B, Tirrell M (1995). Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc, 117(37): 9515–9522
|
16 |
Bhattarai N, Edmondson D, Veiseh O, Matsen F A, Zhang M (2005). Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials, 26(31): 6176–6184
|
17 |
Bigi A, Panzavolta S, Rubini K (2004). Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 25(25): 5675–5680
|
18 |
Brown E J (1986). The role of extracellular matrix proteins in the control of phagocytosis. J Leukoc Biol, 39(5): 579–591
|
19 |
Chaubey A, Ross K J, Leadbetter R M, Burg K J (2008). Surface patterning: tool to modulate stem cell differentiation in an adipose system. J Biomed Mater Res B Appl Biomater, 84B(1): 70–78
|
20 |
Cheema U, Ananta M, Mudera V (2011). Collagen: applications of a natural polymer in regenerative medicine. Regenerative Medicine and Tissue Engineering—Cells and Biomaterials. Eberli D, Ed. In Tech. 287–300
|
21 |
Chen V J, Ma P X (2004). Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials, 25(11): 2065–2073
|
22 |
Chen Y J, Chung M C, Jane Yao C C, Huang C H, Chang H H, Jeng J H, Young T H (2012). The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human dental apical papilla cells. Biomaterials, 33(2): 455–463
|
23 |
Colognato H, Yurchenco P D (2000). Form and function: the laminin family of heterotrimers. Dev Dyn, 218(2): 213–234
|
24 |
Coxon A, Rieu P, Barkalow F J, Askari S, Sharpe A H, von Andrian U H, Arnaout M A, Mayadas T N (1996). A novel role for the β2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity, 5(6): 653–666
|
25 |
Cybulsky M I, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos J C, Connelly P W, Milstone D S (2001). A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest, 107(10): 1255–1262
|
26 |
Davis G E (1992). Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun, 182(3): 1025–1031
|
27 |
Duca L, Floquet N, Alix A J, Haye B, Debelle L (2004). Elastin as a matrikine. Crit Rev Oncol Hematol, 49(3): 235–244
|
28 |
Friedl P (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol, 16(1): 14–23
|
29 |
Friedl P, Bröcker E B (2000). The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci, 57(1): 41–64
|
30 |
Friedl P, Hegerfeldt Y, Tusch M (2004). Collective cell migration in morphogenesis and cancer. Int J Dev Biol, 48(5-6): 441–449
|
31 |
Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B (2009). Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys J, 97(1): 357–368
|
32 |
Gobin A S, West J L (2002). Cell migration through defined, synthetic extracellular matrix analogues. FASEB J, 16(7): 751–753
|
33 |
Golias C, Batistatou A, Bablekos G, Charalabopoulos A, Peschos D, Mitsopoulos P, Charalabopoulos K (2011). Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. Cell Commun Adhes, 18(3): 19–32
|
34 |
Gonzalez A L, El-Bjeirami W, West J L, McIntire L V, Smith C W (2006). Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis. J Leukoc Biol, 81(3): 686–695
|
35 |
Gonzalez A L, Gobin A S, West J L, McIntire L V, Smith C W (2004). Integrin interactions with immobilized peptides in polyethylene glycol diacrylate hydrogels. Tissue Eng, 10(11–12): 1775–1786
|
36 |
Grinnell F (1984). Fibronectin and wound healing. J Cell Biochem, 26(2): 107–116
|
37 |
Gumbiner B M (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 84(3): 345–357
|
38 |
Gumbiner B M (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol, 6(8): 622–634
|
39 |
Guo L T, Zhang X U, Kuang W, Xu H, Liu L A, Vilquin J T, Miyagoe-Suzuki Y, Takeda S, Ruegg M A, Wewer U M, Engvall E (2003). Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. Neuromuscul Disord, 13(3): 207–215
|
40 |
Handley M E, Pollara G, Chain B M, Katz D R (2005). The use of targeted microbeads for quantitative analysis of the phagocytic properties of human monocyte-derived dendritic cells. J Immunol Methods, 297(1–2): 27–38
|
41 |
Hayashi Y, Shumsky J S, Connors T, Otsuka T, Fischer I, Tessler A, Murray M (2005). Immunosuppression with either cyclosporine a or FK506 supports survival of transplanted fibroblasts and promotes growth of host axons into the transplant after spinal cord injury. J Neurotrauma, 22(11): 1267–1281
|
42 |
Hughes C S, Postovit L M, Lajoie G A (2010). Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 10(9): 1886–1890
|
43 |
Huo Y, Hafezi-Moghadam A, Ley K (2000). Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res, 87(2): 153–159
|
45 |
Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004). Recent advances in polymer nanofibers. J Nanosci Nanotechnol, 4(1–2): 52–65
|
44 |
Jha B S, Ayres C E, Bowman J R, Telemeco T A, Sell S A, Bowlin G L, Simpson DG (2011). Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. J Nanomaterials,
|
46 |
Ju Y M, Choi J S, Atala A, Yoo J J, Lee S J (2010). Bilayered scaffold for engineering cellularized blood vessels. Biomaterials, 31(15): 4313–4321
|
47 |
Kafi A M, El-Said W A, Kim T H, Choi J W (2012). Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays. Biomaterials, 33(3):731–739
|
48 |
Komoriya A, Green L J, Mervic M, Yamada S S, Yamada K M, Humphries M J (1991). The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. J Biol Chem, 266(23): 15075–15079
|
49 |
Koo W, Ahn S J, Zhang H, Wang J C, Yim E K F (2011). Human corneal keratocyte response tomicro and nano-gratings on chitosan and PDMS. Cell MolBioeng., 4(3): 399–410
|
50 |
Kundu A K, Putnam A J (2006). Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun, 347(1): 347–357
|
51 |
Ledger P W, Uchida N, Tanzer M L (1980). Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore, monensin. J Cell Biol, 87(3): 663–671
|
52 |
Lee K Y, Mooney D J (2001). Hydrogels for tissue engineering. Chem Rev, 101(7): 1869–1880
|
53 |
Lee S H, Moon J J, Miller J S, West J L (2007). Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials, 28(20): 3163–3170
|
54 |
Long M, Sato M, Lim C T, Wu J, Adachi T, Inoue Y (2011). Advances in experiments in modeling in micro- and nano- biomechanics: A mini review. Cell Mol Bioeng, 4(3): 327–339
|
55 |
Lü S H, Lin Q, Liu Y N, Gao Q, Hao T, Wang Y, Zhou J, Wang H, Du Z, Wu J, Wang C Y (2011). Self-assembly of renal cells into engineered renal tissues in collagen/Matrigel scaffold in vitro. J Tissue Eng Regen Med: N/A (Epub ahead of print)
|
56 |
Ma P X, Zhang R (1999). Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res, 46(1): 60–72
|
57 |
Ma P X, Zhang R, Xiao G, Franceschi R (2001). Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res, 54(2): 284–293
|
58 |
Ma Z, Kotaki M, Inai R, Ramakrishna S (2005). Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng, 11(1–2): 101–109
|
59 |
Macrae E K, Pryzwansky K B (1984). Phagocytosis of zymosan by human neutrophils. Carlsberg Res Commun, 49(2): 315–322
|
60 |
Maheshwari G, Brown G, Lauffenburger D A, Wells A, Griffith L G (2000). Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci, 113(Pt 10): 1677–1686
|
61 |
Man S, Tucky B, Bagheri N, Li X, Kochar R, Ransohoff R M (2009). alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol, 210(1–2): 92–99
|
62 |
Martins-Green M (1997). The Dynamics of Cell-ECM Interactions with Implications for Tissue Engineering. Principles of Tissue Engineering. Lanza R, Langer R, Chick W, Eds. R.G. Landes Company: New York. 23–46
|
63 |
Matter M L, Zhang Z, Nordstedt C, Ruoslahti E (1998). The α5β1 integrin mediates elimination of amyloid-β peptide and protects against apoptosis. J Cell Biol, 141(4): 1019–1030
|
64 |
Matthews J A, Wnek G E, Simpson D G, Bowlin G L (2002). Electrospinning of collagen nanofibers. Biomacromolecules, 3(2): 232–238
|
65 |
McClure M J, Sell S A, Simpson D G, Walpoth B H, Bowlin G L (2010). A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater, 6(7): 2422–2433
|
66 |
McCracken K W, Howell J C, Wells J M, Spence J R (2011). Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc, 6(12): 1920–1928
|
67 |
Meredith J E Jr, Fazeli B, Schwartz M A (1993). The extracellular matrix as a cell survival factor. Mol Biol Cell, 4(9): 953–961
|
68 |
Meshel A S, Wei Q, Adelstein R S, Sheetz M P (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol, 7(2): 157–164
|
69 |
Miller C, George S, Niklason L (2010). Developing a tissue-engineered model of the human bronchiole. J Tissue Eng Regen Med, 4(8): 619–627
|
70 |
Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright S D (1989). Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol, 109(3): 1341–1349
|
71 |
Newman S L, Tucci M A (1990). Regulation of human monocyte/macrophage function by extracellular matrix. Adherence of monocytes to collagen matrices enhances phagocytosis of opsonized bacteria by activation of complement receptors and enhancement of Fc receptor function. J Clin Invest, 86(3): 703–714
|
72 |
Norton L W, Park J, Babensee J E (2010). Biomaterial adjuvant effect is attenuated by anti-inflammatory drug delivery or material selection. J Control Release, 146(3): 341–348
|
73 |
Paik D C, Saito L Y, Sugirtharaj D D, Holmes J W (2006). Nitrite-induced cross-linking alters remodeling and mechanical properties of collagenous engineered tissues. Connect Tissue Res, 47(3): 163–176
|
74 |
Parkhurst M R, Saltzman W M (1992). Quantification of human neutrophil motility in three-dimensional collagen gels. Effect of collagen concentration. Biophys J, 61(2): 306–315
|
75 |
Partin A W, Schoeniger J S, Mohler J L, Coffey D S (1989). Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc Natl Acad Sci USA, 86(4): 1254–1258
|
76 |
Peppas N A (2004). Hydrogels. In Biomaterials Science, 2nd Edition. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Eds. Elsevier Academic Press, 100–106
|
77 |
Petersen T H, Calle E A, Zhao L,Lee E J, Gui L, Raredon M B, Gavrilov K, Yi T, Zhuang Z W, Breuer C, Herzog E, Niklason L E (2010). Tissue-engineered lungs for in vivo implantation. Science, 329(5991): 538–541
|
78 |
Pierschbacher M D, Ruoslahti E (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309(5963): 30–33
|
79 |
Pluskota E, Soloviev D A, Szpak D, Weber C, Plow E F (2008). Neutrophil apoptosis: selective regulation by different ligands of integrin alphaMbeta2. J Immunol, 181(5): 3609–3619
|
80 |
Ricard-Blum S (2011). The collagen family. Cold Spring Harb Perspect Biol, 3(1): a004978
|
81 |
Roca-Cusachs P, Gauthier N C, Del Rio A, Sheetz M P (2009). Clustering of alpha5beta1 integrins determines adhesion strength whereas alphavbeta3 and talin enable mechanotransduction. Proc Natl Acad Sci USA, 22(106): 16245–16250
|
82 |
Rodgers U R, Weiss A S (2005). Cellular interactions with elastin. Pathol Biol (Paris), 53(7): 390–398
|
83 |
Rogers T H, Babensee J E (2011). The role of integrins in the recognition and response of dendritic cells to biomaterials. Biomaterials, 32(5): 1270–1279
|
84 |
Roh J D, Sawh-Martinez R, Brennan M P, Jay S M, Devine L, Rao D A, Yi T, Mirensky T L, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman W M, Snyder E, Kyriakides T R, Pober J S, Breuer C K (2010). Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA, 107(10): 4669–4674
|
85 |
Rubel C, Fernández G C, Dran G, Bompadre M B, Isturiz M A, Palermo M S (2001). Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol, 166(3): 2002–2010
|
86 |
Ruoslahti E (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 12(1): 697–715
|
87 |
Saltzman W M, Livingston T L, Parkhurst M R (1999). Antibodies to CD18 influence neutrophil migration through extracellular matrix. J Leukoc Biol, 65(3): 356–363
|
88 |
Saltzman W M, Parkhurst M R, Parsons-Wingerter P, Zhu W H (1992). Three-dimensional cell cultures mimic tissues. Ann N Y Acad Sci, 665(665): 259–273
|
89 |
Schwarbauer JE, DeSimone DW (2011). Fibronectins, their fibrillogenesis and in vivo Functions. Prespectives in Biology, Cold Spring Harbor, USA
|
90 |
Sell S A, Wolfe P S, Garg K, McCool J M, Rodriguez I A, Bowlin G L (2010). The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers., 2(4): 522–553
|
91 |
Shepherd B R, Enis D R, Wang F, Suarez Y, Pober J S, Schechner J S (2006). Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J, 20(10): 1739–1741
|
92 |
Simon-Assmann P, Orend G, Mammadova-Bach E, Spenlé C, Lefebvre O (2011). Role of laminins in physiological and pathological angiogenesis. Int J Dev Biol, 55(4–5): 455–465
|
93 |
Simpson D G, Terracio L, Terracio M, Price R L, Turner D C, Borg T K (1994). Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol, 161(1): 89–105
|
94 |
Singer A J, Clark R A (1999). Cutaneous wound healing. N Engl J Med, 341(10): 738–746
|
95 |
Singh P, Carraher C, Schwarzbauer J E (2010). Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol, 26(1): 397–419
|
96 |
Sniadecki N J, Anguelouch A, Yang M T, Lamb C M, Liu Z, Kirschner S B, Liu Y, Reich D H, Chen C S (2007). Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA, 104(37): 14553–14558
|
97 |
Stupack D G, Cheresh D A (2004). Integrins and angiogenesis. Curr Top Dev Biol, 64: 207–238
|
98 |
Sugawara K, Tsuruta D, Ishii M, Jones J C, Kobayashi H (2008). Laminin-332 and -511 in skin. Exp Dermatol, 17(6): 473–480
|
99 |
Tan J, Saltzman W M (2002). Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials, 23(15): 3215–3225
|
100 |
Telemeco T A, Ayres C E, Bowlin G L, Wnek G E, Boland E D, Cohen N, Baumgarten C M, Mathews J, Simpson D G (2005). Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater, 1(4): 377–385
|
101 |
Thein-Han W W, Misra R D (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater, 5(4): 1182–1197
|
102 |
Todorovic V, Chen C C, Hay N, Lau L F (2005). The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J Cell Biol, 171(3): 559–568
|
103 |
Tuluc F, Garcia A, Bredetean O, Meshki J, Kunapuli S P (2004). Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways. Am J Physiol Cell Physiol, 287(5): C1264–C1272
|
104 |
Tzu J, Marinkovich M P (2008). Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol, 40(2): 199–214
|
105 |
Underhill D M (2003). Macrophage recognition of zymosan particles. J Endotoxin Res, 9(3): 176–180
|
106 |
van de Witte P, Dijkstra P J, Van den Berg J W A, Feijen J (1996). Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci, 117(1–2): 1–31
|
107 |
Varki A (1994). Selectin ligands. Proc Natl Acad Sci USA, 91(16): 7390–7397
|
108 |
Vasita R, Katti D S (2006). Nanofibers and their applications in tissue engineering. Int J Nanomedicine, 1(1): 15–30
|
109 |
Wagenseil J E, Mecham R P (2007). New insights into elastic fiber assembly. Birth Defects Res C Embryo Today, 81(4): 229–240
|
110 |
Wang Y Y, Lü L X, Feng Z Q, Xiao Z D, Huang N P (2010). Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomed Mater, 5(5): 054112
|
111 |
Werbowetski T, Bjerkvig R, Del Maestro R F (2004). Evidence for a secreted chemorepellent that directs glioma cell invasion. J Neurobiol, 60(1): 71–88
|
112 |
Wierzbicka-Patynowski I, Schwarzbauer J E (2003). The ins and outs of fibronectin matrix assembly. J Cell Sci, 116(16): 3269–3276
|
113 |
Wilson B D, Gibson C C, Sorensen L K, Guilhermier M Y, Clinger M, Kelley L L, Shiu Y T, Li D Y (2011). Novel approach for endothelializing vascular devices: understanding and exploiting elastin-endothelial interactions. Ann Biomed Eng, 39(1): 337–346
|
114 |
Woo K M, Seo J, Zhang R, Ma P X (2007). Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials, 28(16): 2622–2630
|
115 |
Wu C, Fields A J, Kapteijn B A, McDonald J A (1995). The role of alpha 4 beta 1 integrin in cell motility and fibronectin matrix assembly. J Cell Sci, 108(Pt 2): 821–829
|
116 |
Zhang R, Ma P X (2000). Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res, 52(2): 430–438
|
/
〈 | 〉 |