RESEARCH ARTICLE

Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles

  • Lu HUANG ,
  • Xiaojie CHENG ,
  • Chengsheng LIU ,
  • Ke XING ,
  • Jing ZHANG ,
  • Gangzheng SUN ,
  • Xiaoyan LI ,
  • Xiguang CHEN
Expand
  • College of Marine Life Science, Ocean University of China, Qingdao 266003, China

Received date: 02 Dec 2008

Accepted date: 06 Jan 2009

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

An oleic acid-grafted chitosan oligosaccharide (CSO-OA) with different degrees of amino substitution (DSs) was synthesized by the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. Fourier transform infrared spectroscopy (FT-IR) suggested the formation of an amide linkage between amino groups of chitosan oligosaccharide and carboxyl groups of oleic acid. The critical aggregation concentrations (CACs) of CSO-OA with 6%, 11%, and 21% DSs were 0.056, 0.042, and 0.028 mg·mL-1, respectively. Nanoparticles prepared with the sonication method were characterized by means of transmission electron microscopy (TEM) and Zetasizer, and the antibacterial activity against Escherichia coli and Staphylococcus aureus was investigated. The results showed that the CSO-OA nanoparticles were in the range of 60-200 nm with satisfactory structural integrity. The particle size slightly decreased with the increase of DS of CSO-OA. The antibacterial trial showed that the nanoparticles had good antibacterial activity against E. coli and S. aureus.

Cite this article

Lu HUANG , Xiaojie CHENG , Chengsheng LIU , Ke XING , Jing ZHANG , Gangzheng SUN , Xiaoyan LI , Xiguang CHEN . Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles[J]. Frontiers in Biology, 2009 , 4(3) : 321 -327 . DOI: 10.1007/s11515-009-0027-4

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 30770582), the International S&T Cooperation Program of China (No. 2008DFA31640), and the Ph.D Programs Foundation of the Ministry of Education of China (No. 20070423013).
1
Ananthapadmanabhan K P, Goddard E D, Turro N J, Kuo P L (1985). Fluorescence probes for critical micelle concentration. Langmuir, 1(3): 352-355

DOI

2
Ben-Shalom N, Ardi R, Pinto R, Aki C, Fallik E (2003). Controlling gray mould caused by Botytis cinerea in cucumber plants by means of chitosan. Crop Protection, 22(2): 285-290

DOI

3
Choi B K, Kim K Y, Yoo Y J, Oh S J, Choi J H, Kim C Y (2001). In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. International Journal of Antimicrobial Agents, 18(6): 553-557

DOI

4
Chung Y C, Wang H L, Chen Y M, Li S L (2003). Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technology, 88(3): 179-184

DOI

5
Esquenet C, Terech P, Boue F, Buhler E (2004). Structural and rheological properties of hydrophobically modified polysaccharide associative networks. Langmuir, 20(3): 3583-3592

DOI

6
Helander I M, Nurmiaho Lassila E L, Ahvenainen R, Rhoades J, Roller S (2001). Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. International Journal of Food Microbiology, 71(2,3): 235-244

7
Hirano S, Nagao N (1989). Effects of chitosan, pectic acid, lysozyme and chitinase on the growth of several phytopathogens. Agricultural and Biological Chemistry, 53(11): 3065-3066

8
Hu F Q, Ren G F, Yuan H, Du Y Z, Zeng S (2006). Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids and Surfaces B: Biointerfaces, 50(2): 97-103

DOI

9
Hu F Q, Zhao M D, Yuan H, You J, Du Y Z, Zeng S (2006). A novel chitosan oligosaccharide-stearic acid micelles for gene delivery: Properties and in vitro transfection studies. International Journal of Pharmaceutics, 315(1,2): 158-166

10
Jeon Y J, Kim S K (2000). Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydrate Polymers, 41(2): 133-141

DOI

11
Kendra D F, Christian D, Hadwiger L A (1989). Chitosan oligomers from Fusarium solani/pea interactions, Chitinase/beta-glucanase digestion of sporelings and fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiological and Molecular Plant Pathology, 35(3): 215-230

DOI

12
Koide S S (1998). Chitin-chitosan: Properties, benefits and risks. Nutrition Research, 18(6): 1091-1101

DOI

13
Le Tien C, Lacroix M, Ispas-Szabo P, Mateescu M A (2003). N-acylated chitosan: hydrophobic matrices for controlled drug release. Journal of Controlled Release, 93(1): 1-13

DOI

14
Li Y Y, Chen X G, Liu C S, Cha D S, Park H J, Lee C M (2007). Effect of the molecular mass and degree of substitution of oleoylchitosan on the structure, rheological properties, and formation of nanoparticles. Journal of Agricultural and Food Chemistry, 55: 4842-4847

DOI

15
Liu C G, Fan W W, Chen X G, Liu C S, Meng X H, Park H J (2007). Self-assembled nanoparticles based on linoleic-acid modified carboxymethyl-chitosan as carrier of adriamycin (ADR). Current Applied Physics, 7(Suppl 1): e125-e129

DOI

16
Liu X F, Guan Y L, Yang D Z, Li Z, Yao K D (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7): 1324-1335

DOI

17
Mitra S, Gaur U, Ghosh P C, Maitra A N (2001). Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal of Controlled Release, 74(1-3): 317-323

DOI

18
Qi L F, Xu Z R, Jiang X, Hu C H, Zou X F (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16): 2693-2700

19
Qin C Q, Du Y M, Xiao L, Zhan L, Gao X H (2002). Enzymic preparation of water-soluble chitosan and their antitumor activity. International Journal of Biological Macromolecules, 31(1-3): 111-117

DOI

20
Qin C Q, Zhou B, Zeng L T, Zhang Z H, Liu Y, Du Y M, Xiao L (2004). The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chemistry, 84(1): 107-115

DOI

21
Roller S, Covill N (1999). The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47(1,2): 67-77

22
Shigemasa Y, Matsuura H, Sashiwa H, Saimoto H (1996). Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules, 18(3): 237-242

DOI

23
Smith P K, Mallia A K, Hermanson G T (1980). Colorimetric method for the assay of heparin content in immobilized heparin preparations. Analytical Biochemistry, 109(2): 466-473

DOI

24
Sudarshan N R, Hoover D G, Knorr D (1992). Antibacterial action of chitosan. Food Biotechnology, 6(3): 257-272

25
Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986). Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydrate Research, 151: 403-408

DOI

26
Uchida Y, Izume M, Ohtakara A (1989). Preparation of chitosan oligomers with purified chitosanase and its application. In: Skjåk-Bræk G, Anthonsen T, Sandford P, eds. Chitin and chitosan: Sources, chemistry, biochemistry, physical properties and applications. London: Elsevier, 373-382

27
Vishu Kumar A B, Varadaraj M C, Lalitha R G, Tharanathan R N (2004). Low molecular weight chitosans: preparation with the aid of papain and characterization. Biochimica et Biophysica Acta-General Subjects, 1670(2): 137-146

DOI

28
Xing K, Chen X G, Li Y Y, Liu C S, Liu C G, Cha D S, Park H J (2008). Antibacterial activity of oleoyl-chitosan nanoparticles: A novel antibacterial dispersion system. Carbohydrate Polymers, 74(1): 114-120

DOI

29
Young D H, Kauss H (1983). Release of calcium from suspension cultured Glycine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability. Plant Physiology, 73: 698-702

DOI

Outlines

/