REVIEW

Gene deletor: a new tool to address gene flow and food safety concerns over transgenic crop plants

  • Yi LI
Expand
  • Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA

Received date: 21 Nov 2011

Accepted date: 26 Dec 2011

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Environmental and food safety concerns over transgenic plants have hampered commercial applications of transgenic plant technology worldwide. A recently developed transgene deletion technology, named gene deletor technology, may be used to eliminate all transgenes from pollen, seeds, fruits or other organs when functions of transgenes are no longer needed or their presence may cause concerns. In this review, I will briefly describe the principle of the gene deletor technology with major supporting experimental data. I will also explain main characteristics and requirements of the gene deletor technology. Finally, I will discuss the gene deletor technology in the context of how it may be used to alleviate environmental and food safety concerns over transgenic plants in vegetatively and sexually propagated plants, to prevent volunteer transgenic plants, to protect proprietary transgenic technologies, and to allow farmers to reuse their harvested seeds for future planting.

Cite this article

Yi LI . Gene deletor: a new tool to address gene flow and food safety concerns over transgenic crop plants[J]. Frontiers in Biology, 0 , 7(6) : 557 -565 . DOI: 10.1007/s11515-012-1195-1

Acknowledgments

USDA NIFA, Connecticut Innovation, Inc., Consortium of Plant Biotechnology Research, Inc. (CPBR), and University of Connecticut Storrs Agricultural Experiment Station are acknowledged for financial support of the gene deletor research project.
1
Bayley C C, Morgan M, Dale E C, Ow D W (1992). Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Mol Biol, 18(2): 353-361

DOI PMID

2
Belostotsky D A, Meagher R B (1996). A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast. Plant Cell, 8(8): 1261-1275

PMID

3
Chen L J, Lee D S, Song Z P, Suh H S, Lu B R (2004). Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot (Lond), 93(1): 67-73

DOI PMID

4
Chen Y, Rice P A (2003). New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct, 32(1): 135-159

DOI PMID

5
Clark D, Klee H, Dandekar A (2004). Despite benefits, commercialization of transgenic horticultural crops lags. Calif Agric, 58(2): 89-98

DOI

6
Conner A J, Glare T R, Nap J P (2003). The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J, 33(1): 19-46

DOI PMID

7
Corneille S, Lutz K, Svab Z, Maliga P (2001). Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J, 27(2): 171-178

DOI PMID

8
Dale E C, Ow D W (1991). Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA, 88(23): 10558-10562

DOI PMID

9
Dale P J, Clarke B, Fontes E M G (2002). Potential for the environmental impact of transgenic crops. Nat Biotechnol, 20(6): 567-574

DOI PMID

10
Daniell H, Kumar S, Dufourmantel N (2005a). Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol, 23(5): 238-245

DOI PMID

11
Daniell H, Ruiz O N, Dhingra A (2005b). Chloroplast genetic engineering to improve agronomic traits. Methods Mol Biol, 286: 111-138

PMID

12
Gardner D S, Danneberger T K, Nelson E K (2004). Lateral spread of glyphosate-resistant transgenic creeping bentgrass (Agrostis stolonifera) lines in established turfgrass swards. Weed Technol, 18(3): 773-778

DOI

13
Gilbertson L (2003). Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol, 21(12): 550-555

DOI PMID

14
Giovannetti M (2003). The ecological risks of transgenic plants. Riv Biol, 96(2): 207-223

PMID

15
Grindley N D, Whiteson K L, Rice P A (2006). Mechanisms of site-specific recombination. Annu Rev Biochem, 75(1): 567-605

DOI PMID

16
Hare P D, Chua N H (2002). Excision of selectable marker genes from transgenic plants. Nat Biotechnol, 20(6): 575-580

DOI PMID

17
Heuberger S, Ellers-Kirk C, Tabashnik B E, Carrière Y (2010). Pollen- and seed-mediated transgene flow in commercial cotton seed production fields. PLoS ONE, 5(11): e14128

DOI PMID

18
Hoa T T C, Bong B B, Huq E, Hodges T K (2002). Cre/ lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet, 104(4): 518-525

DOI PMID

19
Hoff T, Schnorr K M, Mundy J (2001). A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol, 45(1): 41-49

DOI PMID

20
Iamtham S, Day A (2000). Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol, 18(11): 1172-1176

DOI PMID

21
Jones P B C (2005). Approval for genetically engineered bentgrass creeps through agency turfs. ISB News Report, http://isb.vt.edu/articles/jan0504.htm

22
Justman M (2008). Enginerrin Agriculture (The 10th briefs on the top areas for technology innovation through 2025). (http://www.socialtechnologies.com/FileView.aspx?fileName=PressRelease03102008.pdf)

23
Kausch A, Hague J, Oliver M, Li Y, Daniell H, Mascia P, Watrud L, Stewart C N Jr (2010). Transgenic biofuel feedstocks and strategies for biocontainment. Biofuels, 1(1): 163-176

DOI

24
Klaus S M J, Huang F C, Golds T J, Koop H U (2004). Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol, 22(2): 225-229

DOI PMID

25
König A (2003). A framework for designing transgenic crops—science, safety and citizen’s concerns. Nat Biotechnol, 21(11): 1274-1279

DOI PMID

26
Lauth M, Spreafico F, Dethleffsen K, Meyer M (2002). Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucleic Acids Res, 30(21): 115e

DOI PMID

27
Li R, Jia X, Mao X (2005). Ethanol-inducible gene expression system and its applications in plant functional genomics. Plant Sci, 169(3): 463-469

DOI

28
Li Y, Duan H, Smith W (2007). Gene-deletor: a new tool to address concerns over GE crops. USDA Information Systems for Biotechnology News Report, June

29
Luo H, Lyznik L A, Gidoni D, Hodges T K (2000). FLP-mediated recombination for use in hybrid plant production. Plant J, 23(3): 423-430

DOI PMID

30
Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart C N Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007). ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J, 5(2): 263-274

DOI PMID

31
Lyznik L A, Gordon-Kamm W J, Tao Y (2003). Site-specific recombination for genetic engineering in plants. Plant Cell Rep, 21(10): 925-932

DOI PMID

32
Magaña-Gómez J A, de la Barca A M (2009). Risk assessment of genetically modified crops for nutrition and health. Nutr Rev, 67(1): 1-16

DOI PMID

33
Mallet J, Porter P (1992). Preventing insect adaptation to insect-resistant crops: Are seed mixtures or refugia the best strategy? Proceedings B is the Royal Society B, 250, 165-169

34
Mehendale H M (2004). Genetically modified foods get bad rap. Int J Toxicol, 23(2): 79-80

DOI PMID

35
Messeguer J (2003). Gene flow assessment in transgenic plants. Plant Cell Tissue Organ Cult, 73(3): 201-212

DOI

36
Mlynárová L, Conner A J, Nap J P (2006). Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J, 4(4): 445-452

DOI PMID

37
Moon H S, Li Y, Stewart C N Jr (2010). Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Trends Biotechnol, 28(1): 3-8

DOI PMID

38
Muller B (2006). Infringing and trespassing plants. Patented seeds at dispute in Canada's courts. Focal European Journal of Anthropology, 48: 83-98

39
Nern APfeiffer, B.D. Svoboda, K. & Rubin, G.M. (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proceedings of the National Academy of Sciences, USA, 108, 14198-14203.

40
Odell J, Caimi P, Sauer B, Russell S (1990). Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet, 223(3): 369-378

DOI PMID

41
Oliver M J, Quisenberry J E, Trolinder N L G, Keim D L (1998). US United States Patent Number <patent>5723765</patent>: Control of Plant Gene Expression

42
Ow D W (2001). The right chemistry for marker gene removal? Nat Biotechnol, 19(2): 115-116

DOI PMID

43
Ow D W (2002). Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol, 48(1-2): 183-200

DOI PMID

44
Ow D W (2007). GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol, 18(2): 115-120

DOI PMID

45
Ow D W (2011). Recombinase-mediated gene stacking as a transformation operating system. J Integr Plant Biol, 53(7): 512-519

DOI PMID

46
Redenbaugh K, McHughen A (2004). Regulatory challenges reduce opportunities for horticultural biotechnology. Calif Agric, 58(2): 106-115

DOI

47
Reichman J R, Watrud L S, Lee E H, Burdick C A, Bollman M A, Storm M J, King G A, Mallory-Smith C (2006). Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Mol Ecol, 15(13): 4243-4255

DOI PMID

48
Rieger M A, Lamond M, Preston C, Powles S B, Roush R T (2002). Pollen-mediated movement of herbicide resistance between commercial canola fields. Science, 296(5577): 2386-2388

DOI PMID

49
Russell S H, Hoopes J L, Odell J T (1992). Directed excision of a transgene from the plant genome. Mol Gen Genet, 234(1): 49-59

PMID

50
Senaratna T (1992). Artificial seeds. Biotechnol Adv, 10(3): 379-392

DOI PMID

51
Shand H (2002). Terminator no solution to gene flow. Nat Biotechnol, 20(8): 775-776

DOI PMID

52
Srivastava V, Gidoni D (2010). Site-specific gene integration technologies for crop improvement. In Vitro Cell Dev Biol Plant, 46(3): 219-232

DOI

53
Srivastava V, Ow D W (2003). Rare instances of Cre-mediated deletion product maintained in transgenic wheat. Plant Mol Biol, 52(3): 661-668

DOI PMID

54
Stewart C N Jr, Halfhill M D, Warwick S I (2003). Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet, 4(10): 806-817

DOI PMID

55
Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000). A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J, 22(5): 461-469

DOI PMID

56
van Duyne G D (2001). A structural view of cre-loxp site-specific recombination. Annu Rev Biophys Biomol Struct, 30(1): 87-104

DOI PMID

57
Watrud L S, Lee E H, Fairbrother A, Burdick C, Reichman J R, Bollman M, Storm M, King G, van de Water P K (2004). Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proceedings of the National Academy of Sciences USA, 101, 14533-14538

58
Zuo J, Niu Q W, Møller S G, Chua N H (2001). Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol, 19(2): 157-161

DOI PMID

Outlines

/