REVIEW

Signaling mechanisms integrating carbon and nitrogen utilization in plants

  • Yuying SANG , 1 ,
  • Wenfeng SUN 1 ,
  • Zhenbiao YANG 2
Expand
  • 1. National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
  • 2. Department of Botany and Plant Sciences, and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA

Received date: 03 Sep 2012

Accepted date: 09 Oct 2012

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Carbon (C) and nitrogen (N) are two essential nutrients affecting plant growth and development. Plants are non-motile organisms and have evolved highly sophisticated and complex sensing and signaling mechanisms to respond to the dynamic changes of C and N nutrients in their surroundings. C and N metabolism are tightly coordinated to maintain intracellular C/N homeostasis. However, the regulatory mechanism underlying C/N coordination and balancing in plants remains to be elucidated. It has been suggested that C and N metabolism are modulated by the interaction of C signaling with N signaling or by C/N ratio signaling. This review focuses on cell signaling studies that provide insight into the regulation mechanism of C/N balancing in plants.

Cite this article

Yuying SANG , Wenfeng SUN , Zhenbiao YANG . Signaling mechanisms integrating carbon and nitrogen utilization in plants[J]. Frontiers in Biology, 2012 , 7(6) : 548 -556 . DOI: 10.1007/s11515-012-1249-4

Acknowledgment

This work is supported by funding from the National Key Laboratory of Plant Molecular Genetics at Shanghai Institute of Plant Physiology and Ecology. We thank Dr. Irene Lavagi for editing the language of this manuscript.
1
Baena-Gonzalez E, Rolland F, Thevelein J M, Sheen J (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature, 448(7156): 938–942

DOI PMID

2
Barbosa J M, Singh N K, Cherry J H, Locy R D (2010). Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiol Biochem, 48(6): 443–450

DOI PMID

3
Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996). Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J, 15(12): 2988–2996

PMID

4
Beuve N, Rispail N, Laine P, Cliquet J B, Ourry A, Le Deunff E (2004). Putative role of γ-amino- butyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ, 27(8): 1035–1046

DOI

5
Bi Y M, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S (2005). Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J, 44(4): 680–692

DOI PMID

6
Bouche N, Fromm H (2004). GABA in plants: just a metabolite? Trends Plant Sci, 9(3): 110–115

DOI PMID

7
Bown A W, Shelp B J (1997). The metabolism and functions of γ-aminobutyric acid. Plant Physiol, 115(1): 1–5

PMID

8
Chen Y M, Ferrar T S, Lohmeier-Vogel E M, Morrice N, Mizuno Y, Berenger B, Ng K K, Muench D G, Moorhead G B (2006). The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase. J Biol Chem, 281(9): 5726–5733

DOI PMID

9
Chiang Y H, Zubo Y O, Tapken W, Kim H J, Lavanway A M, Howard L, Pilon M, Kieber J J, Schaller G E (2012). Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. Plant Physiol, 160(1): 332–348

DOI PMID

10
Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolaï M, Bedu M, Robaglia C, Meyer C (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep, 8(9): 864–870

DOI PMID

11
Diaz C, Kusano M, Sulpice R, Araki M, Redestig H, Saito K, Stitt M, Shin R (2011). Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes. BMC Syst Biol, 5(1): 192–201

DOI PMID

12
Fait A, Nesi A N, Angelovici R, Lehmann M, Pham P A, Song L, Haslam R P, Napier J A, Galili G, Fernie A R (2011). Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol, 157(3): 1026–1042

DOI PMID

13
Faix B, Radchuk V, Nerlich A, Hümmer C, Radchuk R, Emery R J, Keller H, Götz K P, Weschke W, Geigenberger P, Weber H (2012). Barley grains, deficient in cytosolic small subunit of ADP-glucose pyrophosphorylase, reveal coordinate adjustment of C:N metabolism mediated by an overlapping metabolic-hormonal control. Plant J, 69(6): 1077–1093

DOI PMID

14
Ferl R J, Chung H J, Sehnke P C (1999). The 14–3-3 proteins: cellular regulators of plant metabolism.

15
Ferrario-Mery S, Meyer C, Hodges M (2008). Chloroplast nitrite uptake is enhanced in Arabidopsis PII mutants. FEBS Lett, 582(7): 1061–1066

DOI PMID

16
Foyer C H, Noctor G, Hodges M (2011). Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot, 62(4): 1467–1482

DOI PMID

17
Gao P, Xin Z, Zheng Z L (2008). The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis. PLoS ONE, 3(1): e1387

DOI PMID

18
Gutierrez R A, Stokes T L, Thum K, Xu X, Obertello M, Katari M S, Tanurdzic M, Dean A, Nero D C, McClung C R, Coruzzi G M (2008). Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA, 105(12): 4939–4944

DOI PMID

19
Halford N G, Hey S, Jhurreea D, Laurie S, McKibbin R S, Paul M, Zhang Y (2003). Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot, 54(382): 467–475

DOI PMID

20
Hanning I, Heldt H W (1993). On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L). leaves: Partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products. Plant Physiol, 103(4): 1147–1154

PMID

21
Hershko A, Ciechanover A (1998). The ubiquitin system. Annu Rev Biochem, 67(1): 425–479

DOI PMID

22
Hey S J, Byrne E, Halford N G (2010). The interface between metabolic and stress signaling. Ann Bot (Lond), 105(2): 197–203

DOI

23
Hsieh M H, Lam H M, van de Loo F J, Coruzzi G (1998). A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci USA, 95(23): 13965–13970

DOI PMID

24
Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 409(6823): 1060–1063

DOI PMID

25
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg M A, Hall A, Hall M N (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol, 6(11): 1122–1128

DOI PMID

26
Jang J C, León P, Zhou L, Sheen J (1997). Hexokinase as a sugar sensor in higher plants. Plant Cell, 9(1): 5–19

PMID

27
Joy K W (1988). Ammonia, glutamine, and asparagine: a carbon-nitrogen interface. Can J Bot, 66: 2103–2109

28
Kang J, Mehta S, Turano F J (2004). The putative glutamate receptor 1.1 (AtGLR1.1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss. Plant Cell Physiol, 45(10): 1380–1389

DOI PMID

29
Kang J, Turano F J (2003). The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci USA, 100(11): 6872–6877

DOI PMID

30
Kiba T, Kudo T, Kojima M, Sakakibara H (2011). Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot, 62(4): 1399–1409

DOI PMID

31
Kinnersley A M, Lin F (2000). Receptor modifiers indicate that γ-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regul, 32(1): 65–76

DOI

32
Krouk G, Crawford N M, Coruzzi G M, Tsay Y F (2010). Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol, 13(3): 266–273

DOI PMID

33
Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J, 9(8): 826–837

DOI PMID

34
Laurie S, McKibbin R S, Halford N G (2003). Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an alpha-amylase (alpha-Amy2) gene promoter in cultured wheat embryos. J Exp Bot, 54(383): 739–747

DOI PMID

35
Li J Y, Liu X H, Cai Q S, Gu H, Zhang S S, Wu Y Y, Wang C J (2008). Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition. J Integr Plant Biol, 50(6): 723–732

DOI PMID

36
Longstreth D J, Nobel P S (1980). Nutrient Influences on Leaf Photosynthesis: effects of nitrogen, phosphorus, and potassium for Gossypium hirsutum L. Plant Physiol, 65(3): 541–543

DOI PMID

37
Maekawa S, Sato T, Asada Y, Yasuda S, Yoshida M, Chiba Y, Yamaguchi J (2012). The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response. Plant Mol Biol, 79(3): 217–227

DOI PMID

38
Malamy J E, Ryan K S (2001). Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol, 127(3): 899–909

DOI PMID

39
Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010). Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci USA, 107(11): 5226–5231

DOI PMID

40
McKibbin R S, Muttucumaru N, Paul M J, Powers S J, Burrell M M, Coates S, Purcell P C, Tiessen A, Geigenberger P, Halford N G (2006). Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotechnol J, 4(4): 409–418

DOI PMID

41
Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA, 99(9): 6422–6427

DOI PMID

42
Naito T, Kiba T, Koizumi N, Yamashino T, Mizuno T (2007). Characterization of a unique GATA family gene that responds to both light and cytokinin in Arabidopsis thaliana. Biosci Biotechnol Biochem, 71(6): 1557–1560

DOI PMID

43
Nero D, Krouk G, Tranchina D, Coruzzi G M (2009). A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive “biomodule”. BMC Syst Biol, 3(1): 59

DOI PMID

44
Ninfa A J, Atkinson M R (2000). PII signal transduction proteins. Trends Microbiol, 8(4): 172–179

DOI PMID

45
Ninfa A J, Jiang P (2005). PII signal transduction proteins: sensors of α-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol, 8(2): 168–173

DOI PMID

46
Nunes-Nesi A, Fernie A R, Stitt M (2010). Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant, 3(6): 973–996

DOI PMID

47
Oka M, Shimoda Y, Sato N, Inoue J, Yamazaki T, Shimomura N, Fujiyama H (2012). Abscisic acid substantially inhibits senescence of cucumber plants (Cucumis sativus) grown under low nitrogen conditions. J Plant Physiol, 169(8): 789–796

DOI PMID

48
Paul M J, Primavesi L F, Jhurreea D, Zhang Y (2008). Trehalose metabolism and signaling. Annu Rev Plant Biol, 59(1): 417–441

DOI PMID

49
Price J, Laxmi A, St Martin S K, Jang J C (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell, 16(8): 2128–2150

DOI PMID

50
Rahayu Y S, Walch-Liu P, Neumann G, Römheld V, von Wirén N, Bangerth F (2005). Root-derived cytokinins as long-distance signals for NO3—induced stimulation of leaf growth. J Exp Bot, 56(414): 1143–1152

DOI PMID

51
Rolland F, Baena-Gonzalez E, Sheen J (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol, 57(1): 675–709

DOI PMID

52
Saci A, Cantley L C, Carpenter C L (2011). Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell, 42(1): 50–61

DOI PMID

53
Sanchez S, Demain A L (2002). Metabolic regulation of fermentation processes. Enzyme Microb Technol, 31(7): 895–906

DOI

54
Sato T, Maekawa S, Yasuda S, Domeki Y, Sueyoshi K, Fujiwara M, Fukao Y, Goto D B, Yamaguchi J (2011a). Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis. Plant J, 68(1): 137–146

DOI PMID

55
Sato T, Maekawa S, Yasuda S, Yamaguchi J (2011b). Carbon and nitrogen metabolism regulated by the ubiquitin-proteasome system. Plant Signal Behav, 6(10): 1465–1468

DOI PMID

56
Schmelzle T, Hall M N (2000). TOR, a central controller of cell growth. Cell, 103(2): 253–262

DOI PMID

57
Smeekens S, Ma J, Hanson J, Rolland F (2010). Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 13(3): 274–279

DOI PMID

58
Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N, Fuchs J, Miersch O, Strickert M, Usadel B, Wobus U, Grimm B, Weber H, Weschke W (2010). De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J, 64(4): 589–603

DOI PMID

59
Stitt M (1999). Nitrate regulation of metabolism and growth. Curr Opin Plant Biol, 2(3): 178–186

DOI PMID

60
Stitt M, Krapp A (1999). The molecular physiological basis for the interaction between elevated carbon dioxide and nutrients. Plant Cell Environ, 22: 583–622

DOI

61
Storm-Mathisen J (1974). GABA as a transmitter in the central nervous system of vertebrates. J Neural Transm, 11: 227–253

62
Sugiyama K, Hayakawa T, Kudo T, Ito T, Yamaya T (2004). Interaction of N-acetylglutamate kinase with a PII-like protein in rice. Plant Cell Physiol, 45(12): 1768–1778

DOI PMID

63
Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004). AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol, 45(8): 1053–1062

DOI PMID

64
Toroser D, Plaut Z, Huber S C (2000). Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate. Plant Physiol, 123(1): 403–412

DOI PMID

65
Uhrig R G, Ng K K, Moorhead G B (2009). PII in higher plants: a modern role for an ancient protein. Trends Plant Sci, 14(9): 505–511

DOI PMID

66
Vidal E A, Gutierrez R A (2008). A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol, 11(5): 521–529

DOI PMID

67
Walch-Liu P, Neumann G, Bangerth F, Engels C (2000). Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot, 51(343): 227–237

DOI PMID

68
Xiong Y, Sheen J (2012). Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem, 287(4): 2836–2842

DOI PMID

69
Xu G, Fan X, Miller A J (2012). Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 63(1): 153–182

DOI PMID

70
Yanagisawa S (2000). Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J, 21(3): 281–288

DOI PMID

71
Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA, 101(20): 7833–7838

DOI PMID

72
Zhang Y, Primavesi L F, Jhurreea D, Andralojc P J, Mitchell R A, Powers S J, Schluepmann H, Delatte T, Wingler A, Paul M J (2009). Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol, 149(4): 1860–1871

DOI PMID

73
Zheng Z L (2009). Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav, 4(7): 584–591

DOI PMID

74
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini D M (2011). mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 334(6056): 678–683

DOI PMID

Outlines

/