Recent progress in the single-cell C4 photosynthesis in terrestrial plants
Received date: 31 Aug 2012
Accepted date: 09 Oct 2012
Published date: 01 Dec 2012
Copyright
Currently, single-cell C4 photosynthesis has been reported in four terrestrial plant species, Bienertia cycloptera, B. sinuspersici, B. kavirense and Suaeda aralocaspica, of family Chenopodiaceae. These species possess novel mechanisms of C4 photosynthesis through spatial partitioning of organelles and key enzymes in distinct cytoplasmic domains within single chlorenchyma cells. Anatomical and biochemical studies have shown that the three Bienertia species and S. aralocaspica utilize biochemical and organellar compartmentation to achieve the equivalent spatial separation of Kranz anatomy but within a single photosynthetic cell. These discoveries have challenged the paradigm for C4 photosynthesis in terrestrial plants which had suggested for more than 40 years that the Kranz feature was indispensably required for its C4 function. In this review, we focus on the recent progress in understanding the cellular and molecular mechanisms that control the spatial relationship of organelles in these unique single-cell C4 systems. The demonstrated interaction of dimorphic chloroplasts with microtubules and actin filaments has shed light on the importance of these cytoskeleton components in the intracellular partitioning of organelles. Future perspectives on the potential function of the cytoskeleton in targeting gene products to specific subcellular compartments are discussed.
Shiu-Cheung LUNG , Makoto YANAGISAWA , Simon D. X. CHUONG . Recent progress in the single-cell C4 photosynthesis in terrestrial plants[J]. Frontiers in Biology, 2012 , 7(6) : 539 -547 . DOI: 10.1007/s11515-012-9248-z
1 |
Akhani H, Barroca J, Koteeva N K, Voznesenskaya E V, Franceschi V, Edwards G, Ghaffari S, Ziegler H (2005). Bienertia sinuspersici (Chenopodiaceae): A new species from Southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Syst Bot, 30(2): 290–301
|
2 |
Akhani H, Chatrenoor T, Dehghani M, Khoshravesh R, Mahdavi P, Matinzadeh Z (2012) A new species of Bienertia (Chenopodiaceae) from Iranian salt deserts: A third species of the genus and discovery of a fourth terrestrial C4 plant without Kranz anatomy. Plant Biosys,
|
3 |
Bashirullah A, Cooperstock R L, Lipshitz H D (1998). RNA localization in development. Annu Rev Biochem, 67(1): 335–394
|
4 |
Chen X, Schnell D J (1999). Protein import into chloroplasts. Trends Cell Biol, 9(6): 222–227
|
5 |
Chuong S D X, Franceschi V R, Edwards G E (2006). The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. Plant Cell, 18(9): 2207–2223
|
6 |
Chuong S D X, Park N I, Freeman M C, Mullen R T, Muench D G (2005). The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells. BMC Cell Biol, 6(1): 40
|
7 |
Collings D A, Lill A W, Himmelspach R, Wasteneys G O (2006). Drug sensitisation studies show actin microfilaments and microtubules interact during root elongation in Arabidopsis thaliana. New Phytol, 170: 275–290
|
8 |
Crofts A J, Washida H, Okita T W, Satoh M, Ogawa M, Kumamaru T, Satoh H (2005). The role of mRNA and protein sorting in seed storage protein synthesis, transport, and deposition. Biochem Cell Biol, 83(6): 728–737
|
9 |
Edwards G E, Franceschi V R, Voznesenskaya E V (2004). Single cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Physiol Plant Mol Biol, 55: 173–196
|
10 |
Edwards G E, Huber S C (1981). The C4 pathway. In The biochemistry of plants, a comprehensive treatise. Vol.8. Photosynthesis, M.D. Hatch and N.K. Boardman, eds (N.Y., London, Toronto, Sydney, San Francisco: Acad. Press), pp. 237–281.
|
11 |
Edwards G E, Voznesenskaya V E, Smith M, Koteyeva N K, Park Y I, Park J H, Kiirats O, Okita T W, Chuong S D X (2008). Breaking the paradigm in C4 photosynthesis: Does it hold promise for C4 rice? In: Charting New Pathways to C4Rice. Eds Sheehy JE, Mitchell PL and Hardy B. World Scientific Publishing Co. pp. 249–273.
|
12 |
Edwards G E, Walker D A (1983). C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Oxford: Blackwell Scientific Publications
|
13 |
Freitag H, Stichler W (2000). A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodeaceae. Plant Biol, 2(2): 154–160
|
14 |
Hatch M D, Slack C R (1970). Photosynthetic CO2-fixation pathways. Annu Rev Plant Physiol, 21: 141–163. In: Hatch M D, Osmond C B, Slatyer R O, eds (1971). Mechanism and function of C4 photosynthesis. In: Photosynthesis and Photorespiration. New York: Wiley-Interscience, pp. 139–152.
|
15 |
Hiltbrunner A, Bauer J, Vidi P A, Infanger S, Weibel P, Hohwy M, Kessler F (2001). Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane. J Cell Biol, 154(2): 309–316
|
16 |
Hirsch S, Muckel E, Heemeyer F, von Heijne G, Soll J (1994). A receptor component of the chloroplast protein translocation machinery. Science, 266(5193): 1989–1992
|
17 |
Ivanova Y, Smith M D, Chen K, Schnell D J (2004). Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol Biol Cell, 15(7): 3379–3392
|
18 |
Jansen R P (2001). mRNA localization: message on the move. Nat Rev Mol Cell Biol, 2(4): 247–256
|
19 |
Jouhet J, Gray J C (2009). Interaction of actin and the chloroplast protein import apparatus. J Biol Chem, 284(28): 19132–19141
|
20 |
Kandasamy M K, Meagher R B (1999). Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskeleton, 44(2): 110–118
|
21 |
Kubis S, Patel R, Combe J, Bédard J, Kovacheva S, Lilley K, Biehl A, Leister D, Ríos G, Koncz C, Jarvis P (2004). Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell, 16(8): 2059–2077
|
22 |
Kwok E Y, Hanson M R (2003). Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J, 35(1): 16–26
|
23 |
Lara M V, Offermann S, Smith M, Okita T W, Andreo C S, Edwards G E (2008). Leaf development in the single-cell C4 system in Bienertia sinuspersici: expression of genes and peptide levels for C4 metabolism in relation to chlorenchyma structure under different light conditions. Plant Physiol, 148(1): 593–610
|
24 |
Logan D C, Scott I, Tobin A K (2003). The genetic control of plant mitochondrial morphology and dynamics. Plant J, 36(4): 500–509
|
25 |
Lung S C, Chuong S D X (2012). A transit peptide-like sorting signal at the C terminus directs the Bienertia sinuspersici preprotein receptor Toc159 to the chloroplast outer membrane. Plant Cell, 24(4): 1560–1578
|
26 |
Lung S C, Yanagisawa M, Chuong S D X (2011). Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici. Plant Cell Rep, 30(4): 473–484
|
27 |
Lung S C, Yanagisawa M, Chuong S D X (2012). Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici. Plant Methods, 8(1): 8
|
28 |
Offermann S, Okita T W, Edwards G E (2011). Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol, 155(4): 1612–1628
|
29 |
Park J H, Knoblauch M, Okita T W, Edwards G E (2009). Structural changes in the vacuole and cytoskeleton are key to development of the two cytoplasmic domains supporting single-cell C(4) photosynthesis in Bienertia sinuspersici. Planta, 229(2): 369–382
|
30 |
Park J H, Okita T W, Edwards G E (2010). Expression profiling and proteomic analysis of isolated photosynthetic cells of the non-Kranz C4 species Bienertia sinuspersici. Funct Plant Biol, 37(1): 1–13
|
31 |
Petrásek J, Schwarzerová K (2009). Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol, 12(6): 728–734
|
32 |
Sage R F (1999). Why C4 photosynthesis? In C4 Plant Biology. Physiological Ecology series, Sage R F and Monson R K, eds (San Diego: Academic Press), pp. 3–16.
|
33 |
Sage R F (2003). Atmospheric CO2, environmental stress and the evolution of C4 photosynthesis. In: Ehleringer J R, Cerling T E, Dearing D, eds. A History of Atmospheric CO2 and its Effects on Plants, Animals and Ecosystems., Berlin: Springer-Verlag
|
34 |
Sampathkumar A, Lindeboom J J, Debolt S, Gutierrez R, Ehrhardt D W, Ketelaar T, Persson S (2011). Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell, 23(6): 2302–2313
|
35 |
Sato Y, Wada M, Kadota A (2001). Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci, 114(Pt 2): 269–279
|
36 |
Schnell D J, Kessler F, Blobel G (1994). Isolation of components of the chloroplast protein import machinery. Science, 266(5187): 1007–1012
|
37 |
Smith M D (2006). Protein import into chloroplasts: an ever-evolving story. Can J Bot, 84(4): 531–542
|
38 |
Smith M D, Rounds C M, Wang F, Chen K, Afitlhile M, Schnell D J (2004). atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J Cell Biol, 165(3): 323–334
|
39 |
Van Gestel K, Köhler R H, Verbelen J P (2002). Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot, 53(369): 659–667
|
40 |
Voznesenskaya E V, Edwards G E, Kiirats O, Artyusheva E G, Franceschi V R (2003). Development of biochemical specialization and organelle partitioning in the single-cell C4 system in leaves of Borszczowia aralocaspica (Chenopodiaceae). Am J Bot, 90(12): 1669–1680
|
41 |
Voznesenskaya E V, Franceschi V R, Kiirats O, Artyusheva E G, Freitag H, Edwards G E (2002). Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J, 31(5): 649–662
|
42 |
Voznesenskaya E V, Franceschi V R, Kiirats O, Freitag H, Edwards G E (2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature, 414(6863): 543–546
|
43 |
Voznesenskaya E V, Koteyeva N K, Chuong S D X, Akhani H, Edwards G E, Franceschi V R (2005). Differentiation of cellular and biochemical features of the single-cell C4 syndrome during leaf development in Bienertia cycloptera (Chenopodiaceae). Am J Bot, 92(11): 1784–1795
|
44 |
Wada M, Kagawa T, Sato Y (2003). Chloroplast movement. Annu Rev Plant Biol, 54(1): 455–468
|
45 |
Wada M, Suetsugu N (2004). Plant organelle positioning. Curr Opin Plant Biol, 7(6): 626–631
|
46 |
Winter K, Smith J A C (1996). Crassulacean Acid Metabolism. New York: Spring
|
/
〈 | 〉 |