REVIEW

The super super-healing MRL mouse strain

  • Ahlke HEYDEMANN
Expand
  • Department of Physiology and Biophysics, Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA

Received date: 19 Oct 2011

Accepted date: 18 Nov 2011

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr/J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr/J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.

Key words: MRL; wound healing; regeneration

Cite this article

Ahlke HEYDEMANN . The super super-healing MRL mouse strain[J]. Frontiers in Biology, 2012 , 7(6) : 522 -538 . DOI: 10.1007/s11515-012-1192-4

ACKNOWLEGMENTS

I thank Susan T. Varghese, Jenan Holley-Cuthrell, Ann F. Kuenster, and Nathan W. Roberts for their help with the writing of this review and preliminary data. This work was supported by a National Institutes of Health Grant (RO1 HL 102322-01A1).
1
Abdullah I, Lepore J J, Epstein J A, Parmacek M S, Gruber P J (2005). MRL mice fail to heal the heart in response to ischemia-reperfusion injury. Wound Repair and Regeneration, 13: 205–208

2
Adachi M, Watanabe-Fukunaga R, Nagata S (1993). Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci USA, 90(5): 1756–1760

DOI

3
Alexakis C, Partridge T, Bou-Gharios G (2007). Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol, 293(2): C661–C669

DOI

4
Alleva D G, Kaser S B, Beller D I (1997). Aberrant cytokine expression and autocrine regulation characterize macrophages from young MRL+/+ and NZB/W F1 lupus-prone mice. J Immunol, 159: 5610–5619

5
Anversa P, Rota M, Urbanek K, Hosoda T, Sonnenblick E H, Leri A, Kajstura J, Bolli R (2005). Myocardial aging–a stem cell problem. Basic Res Cardiol, 100(6): 482–493

DOI

6
Arthur L M, Demarest R M, Clark L, Gourevitch D, Bedelbaeva K, Anderson R, Snyder A, Capobianco A J, Lieberman P, Feigenbaum L, Heber-Katz E (2010). Epimorphic regeneration in mice is p53-independent. Cell Cycle, 9(18): 3667–3673

DOI

7
Ashcroft G S, Yang X, Glick A B, Weinstein M, Letterio J L, Mizel D E, Anzano M, Greenwell-Wild T, Wahl S M, Deng C (1999). Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol, 1(5): 260–266

DOI

8
Baker K L, Daniels S B, Lennington J B, Lardaro T, Czap A, Notti R Q, Cooper O, Isacson O, Frasca S Jr, Conover J C (2006). Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol, 498(6): 747–761

DOI

9
Balomenos D, Martin-Caballero J, Garcia M I, Prieto I, Flores J M, Serrano M, Martinez A C (2000). The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat Med, 6(2): 171–176

DOI

10
Balu D T, Hodes G E, Anderson B T, Lucki I (2009). Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharmacology, 34(7): 1764–1773

DOI

11
Beare A H, Metcalfe A D, Ferguson M W (2006). Location of injury influences the mechanisms of both regeneration and repair within the MRL/MpJ mouse. J Anat, 209(4): 547–559

DOI

12
Bedelbaeva K, Gourevitch D, Clark L, Chen P, Leferovich J M, Heber-Katz E (2004). The MRL mouse heart healing response shows donor dominance in allogeneic fetal liver chimeric mice. Cloning Stem Cells, 6(4): 352–363

DOI

13
Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang X M, Leferovich J, Cheverud J M, Lieberman P, Heber-Katz E (2010). Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci USA, 107(13): 5845–5850

DOI

14
Blankenhorn E P, Bryan G, Kossenkov A V, Clark L D, Zhang X M, Chang C, Horng W, Pletscher L S, Cheverud J M, Showe L C (2009). Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mammalian Genome, 20: 720–733

15
Blankenhorn E P, Troutman S, Clark L D, Zhang X M, Chen P, Heber-Katz E (2003). Sexually dimorphic genes regulate healing and regeneration in MRL mice. Mamm Genome, 14(4): 250–260

DOI

16
Buckley G, Metcalfe A D, Ferguson M W (2011). Peripheral nerve regeneration in the MRL/MpJ ear wound model. J Anat, 218(2): 163–172

DOI

17
Bulfield G, Siller W G, Wight P A, Moore K J (1984). X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA, 81(4): 1189–1192

DOI

18
Chadwick R B, Bu L, Yu H, Hu Y, Wergedal J E, Mohan S, Baylink D J (2007). Digit tip regrowth and differential gene expression in MRL/Mpj, DBA/2, and C57BL/6 mice. Wound Repair and Regeneration, 15: 275–284

19
Chaudhuri T, Rehfeldt F, Sweeney H L, Discher D E (2010). Preparation of collagen-coated gels that maximize in vitro myogenesis of stem cells by matching the lateral elasticity of in vivo muscle. Methods Mol Biol, 621: 185–202

DOI

20
Cimini M, Fazel S, Fujii H, Zhou S, Tang G, Weisel R D, Li R K (2008). The MRL mouse heart does not recover ventricular function after a myocardial infarction. Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology 17, 32–39.

21
Clark L D, Clark R K, Heber-Katz E (1998). A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol, 88(1): 35–45

DOI

22
Colwell A S, Krummel T M, Kong W, Longaker M T, Lorenz H P (2006). Skin wounds in the MRL/MPJ mouse heal with scar. Wound Repair and Regeneration, 14: 81–90

23
Cowin A J, Brosnan M P, Holmes T M, Ferguson M W (1998). Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Developmental Dynamics,212: 385–393.

24
Cullen M J, Jaros E (1988). Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy. Acta Neuropathol, 77(1): 69–81

DOI

25
Darby I A, Bisucci T, Pittet B, Garbin S, Gabbiani G, Desmouliere A (2002). Skin flap-induced regression of granulation tissue correlates with reduced growth factor and increased metalloproteinase expression. J Pathol, 197: 117–127

DOI

26
Davis T A, Amare M, Naik S, Kovalchuk A L, Tadaki D (2007). Differential cutaneous wound healing in thermally injured MRL/MPJ mice. Wound Repair and Regeneration, 15: 577–588

27
Davis T A, Longcor J D, Hicok K C, Lennon G G (2005). Prior injury accelerates subsequent wound closure in a mouse model of regeneration. Cell Tissue Res, 320(3): 417–426

DOI

28
Desmouliere A, Chaponnier C, Gabbiani G (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair and Regeneration, 13: 7–12

29
Donnelly R P, Levine J, Hartwell D Q, Frendl G, Fenton M J, Beller D I (1990). Aberrant regulation of IL-1 expression in macrophages from young autoimmune-prone mice. J Immunol, 145: 3231–3239

30
Fawcett J W, Asher R A (1999). The glial scar and central nervous system repair. Brain Res Bull, 49(6): 377–391

DOI

31
Ferguson M W, O'Kane S (2004). Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci, 359(1445): 839–850

DOI

32
Fitzgerald J, Rich C, Burkhardt D, Allen J, Herzka A S, Little C B (2008). Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthritis and cartilage / OARS. Osteoarthritis Research Society, 16(11): 1319–1326

DOI

33
Gawronska-Kozak B (2004). Regeneration in the ears of immunodeficient mice: identification and lineage analysis of mesenchymal stem cells. Tissue Eng, 10: 1251–1265

34
Goss R J (1980). Prospects of regeneration in man. Clin Orthop Relat Res: 270–282

35
Gourevitch D, Clark L, Chen P, Seitz A, Samulewicz S J, Heber-Katz E (2003). Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model. Developmental Dynamics, 226: 377–387

36
Gourevitch D L, Clark L, Bedelbaeva K, Leferovich J, Heber-Katz E (2009). Dynamic changes after murine digit amputation: the MRL mouse digit shows waves of tissue remodeling, growth, and apoptosis. Wound Repair and Regeneration, 17: 447–455

37
Grisel P, Meinhardt A, Lehr H A, Kappenberger L, Barrandon Y, Vassalli G (2008). The MRL mouse repairs both cryogenic and ischemic myocardial infarcts with scar. Cardiovascular Pathology, 17: 14–22

38
Hampton D W, Seitz A, Chen P, Heber-Katz E, Fawcett J W (2004). Altered CNS response to injury in the MRL/MpJ mouse. Neuroscience, 127(4): 821–832

DOI

39
Han M, Yang X, Taylor G, Burdsal C A, Anderson R A, Muneoka K (2005). Limb regeneration in higher vertebrates: developing a roadmap. Anat Rec B New Anat, 287B(1): 14–24

DOI

40
Harty M, Neff A W, King M W, Mescher A L (2003). Regeneration or scarring: an immunologic perspective. Developmental Dynamics, 226: 268–279

41
Havran W L, Allison J P (1988). Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature, 335(6189): 443–445

DOI

42
Heber-Katz E (1999). The regenerating mouse ear. Semin Cell Dev Biol, 10(4): 415–419

DOI

43
Heber-Katz E, Chen P, Clark L, Zhang X M, Troutman S, Blankenhorn E P (2004a). Regeneration in MRL mice: further genetic loci controlling the ear hole closure trait using MRL and M.m. Castaneus mice. Wound Repair and Regeneration, 12: 384–392

44
Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L (2004b). The scarless heart and the MRL mouse. Philos Trans R Soc Lond B Biol Sci, 359(1445): 785–793

DOI

45
Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L (2006). Conjecture: Can continuous regeneration lead to immortality? Studies in the MRL mouse. Rejuvenation Res, 9(1): 3–9

DOI

46
Heydemann A, Ceco E, Lim J E, Hadhazy M, Ryder P, Moran J L, Beier D R, Palmer A A, McNally E M (2009). Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest, 119(12): 3703–3712

DOI

47
Hong Y, Cervantes R B, Tichy E, Tischfield J A, Stambrook P J (2007). Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res, 614(1–2): 48–55

DOI

48
Hopkinson-Woolley J, Hughes D, Gordon S, Martin P (1994). Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse. J Cell Sci, 107(Pt 5): 1159–1167

49
Ito M R, Ono M, Itoh J, Nose M (2003). Bone marrow cell transfer of autoimmune diseases in a MRL strain of mice with a deficit in functional Fas ligand: dissociation of arteritis from glomerulonephritis. Pathol Int, 53(8): 518–524

DOI

50
Kench J A, Russell D M, Fadok V A, Young S K, Worthen G S, Jones-Carson J, Henson J E, Henson P M, Nemazee D (1999). Aberrant wound healing and TGF-beta production in the autoimmune-prone MRL/+ mouse. Clin Immunol, 92(3): 300–310

DOI

51
Leader B, Leder P (2000). Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev, 93(1–2): 221–231

DOI

52
Leferovich J M, Bedelbaeva K, Samulewicz S, Zhang X M, Zwas D, Lankford E B, Heber-Katz E (2001). Heart regeneration in adult MRL mice. Proc Natl Acad Sci USA, 98(17): 9830–9835

DOI

53
Li X, Mohan S, Gu W, Baylink D J (2001). Analysis of gene expression in the wound repair/regeneration process. Mammalian Genome, 12: 52–59

54
Li X, Mohan S, Gu W, Miyakoshi N, Baylink D J (2000). Differential protein profile in the ear-punched tissue of regeneration and non-regeneration strains of mice: a novel approach to explore the candidate genes for soft-tissue regeneration. Biochim Biophys Acta, 1524(2–3): 102–109

DOI

55
Liu H, Ding Q, Yang K, Zhang T, Li G, Wu G (2011). Meta-analysis of systemic lupus erythematosus and the risk of cervical neoplasia. Rheumatology, 50(2): 343–348

DOI

56
Mann C J, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano A L, Munoz-Canoves P (2011). Aberrant repair and fibrosis development in skeletal muscle. Skeletal muscle 1, 21

57
Masinde G, Li X, Baylink D J, Nguyen B, Mohan S (2005). Isolation of wound healing/regeneration genes using restrictive fragment differential display-PCR in MRL/MPJ and C57BL/6 mice. Biochem Biophys Res Commun, 330(1): 117–122

DOI

58
Masinde G L, Li X, Gu W, Davidson H, Mohan S, Baylink D J (2001). Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. Genome Res, 11(12): 2027–2033

DOI

59
McBrearty B A, Clark L D, Zhang X M, Blankenhorn E P, Heber-Katz E (1998). Genetic analysis of a mammalian wound-healing trait. Proc Natl Acad Sci USA, 95(20): 11792–11797

DOI

60
Metcalfe A D, Willis H, Beare A, Ferguson M W (2006). Characterizing regeneration in the vertebrate ear. J Anat, 209(4): 439–446

DOI

61
Michalopoulos G K, DeFrances M C (1997). Liver regeneration. Science, 276(5309): 60–66

DOI

62
Midwood K S, Williams L V, Schwarzbauer J E (2004). Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol, 36(6): 1031–1037

DOI

63
Moseley F L, Faircloth M E, Lockwood W, Marber M S, Bicknell K A, Valasek P, Brooks G (2011). Limitations of the MRL mouse as a model for cardiac regeneration. J Pharm Pharmacol, 63(5): 648–656

DOI

64
Namazi M R, Fallahzadeh M K, Schwartz R A (2011). Strategies for prevention of scars: what can we learn from fetal skin? Int J Dermatol, 50(1): 85–93

DOI

65
Naseem R H, Meeson A P, Michael Dimaio J, White M D, Kallhoff J, Humphries C, Goetsch S C, De Windt L J, Williams M A, Garry M G (2007). Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiol Genomics, 30(1): 44–52

DOI

66
Naviaux R K, Le T P, Bedelbaeva K, Leferovich J, Gourevitch D, Sachadyn P, Zhang X M, Clark L, Heber-Katz E (2009). Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab, 96(3): 133–144

DOI

67
Oh Y S, Thomson L E, Fishbein M C, Berman D S, Sharifi B, Chen P S (2004). Scar formation after ischemic myocardial injury in MRL mice. Cardiovascular Pathology, 13: 203–206

68
Peled Z M, Phelps E D, Updike D L, Chang J, Krummel T M, Howard E W, Longaker M T (2002). Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconstr Surg, 110(3): 801–811

DOI

69
Peng S L, Madaio M P, Craft J (1996). Systemic autoimmunity in LG/J mice. Immunol Lett, 53(2–3): 153–155

DOI

70
Potter P K, Cortes-Hernandez J, Quartier P, Botto M, Walport M J (2003). Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J Immunol, 170: 3223–3232

71
Rajnoch C, Ferguson S, Metcalfe A D, Herrick S E, Willis H S, Ferguson M W (2003). Regeneration of the ear after wounding in different mouse strains is dependent on the severity of wound trauma. Developmental Dynamics, 226: 388–397

72
Rao N, Jhamb D, Milner D J, Li B, Song F, Wang M, Voss S R, Palakal M, King M W, Saranjami B, Nye H L D, Cameron J, Stocum D L (2009). Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol, 7(1): 83

DOI

73
Robey T E, Murry C E (2008). Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovascular Pathology, 17: 6–13

74
Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau H M (2008). Self-renewal and expansion of single transplanted muscle stem cells. Nature, 456(7221): 502–506

DOI

75
Sachadyn P, Zhang X M, Clark L D, Naviaux R K, Heber-Katz E (2008). Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion, 8(5–6): 358–366

DOI

76
Saika S (2007). Yin and yang in cytokine regulation of corneal wound healing: roles of TNF-alpha. Cornea, 26(Supplement 1): S70–S74

DOI

77
Santiago-Raber M L, Lawson B R, Dummer W, Barnhouse M, Koundouris S, Wilson C B, Kono D H, Theofilopoulos A N (2001). Role of cyclin kinase inhibitor p21 in systemic autoimmunity. J Immunol, 167: 4067–4074

78
Shah M, Foreman D M, Ferguson M W (1995). Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci, 108(Pt 3): 985–1002

79
Stocum D L (1984). The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation, 27(1–3): 13–28

DOI

80
Stocum, D.L., and Crawford, K. (1987). Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochemistry and cell biology, 65: 750–761

81
Tassava R A (1983). Limb regeneration to digit stages occurs in well-fed adult newts after hypophysectomy. J Exp Zool, 225(3): 433–441

DOI

82
Theofilopoulos A N, Dixon F J (1985). Murine models of systemic lupus erythematosus. Adv Immunol, 37: 269–290

DOI

83
Thuret S, Toni N, Aigner S, Yeo G W, Gage F H (2009). Hippocampus-dependent learning is associated with adult neurogenesis in MRL/MpJ mice. Hippocampus, 19(7): 658–669

DOI

84
Tolba R H, Schildberg F A, Decker D, Abdullah Z, Buttner R, Minor T, von Ruecker A (2010). Mechanisms of improved wound healing in Murphy Roths Large (MRL) mice after skin transplantation. Wound Repair Regen, 18(6): 662–670

DOI

85
Torres V E, Leof E B (2011). Fibrosis, regeneration, and aging: playing chess with evolution. J Am Soc Nephrol, 22(8): 1393–1396

DOI

86
Ueno M, Lyons B L, Burzenski L M, Gott B, Shaffer D J, Roopenian D C, Shultz L D (2005). Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci, 46(11): 4097–4106

DOI

87
Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing J E, Zhang L, Cordero K, Bedelbaeva K, Gourevitch D, Heber-Katz E(2010). Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vitro. Matrix Biology, 29: 690–700

88
Wandstrat A, Wakeland E (2001). The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol, 2(9): 802–809

DOI

89
Ward B D, Furman B D, Huebner J L, Kraus V B, Guilak F, Olson S A (2008). Absence of posttraumatic arthritis following intraarticular fracture in the MRL/MpJ mouse. Arthritis Rheum, 58(3): 744–753

DOI

90
Watson M L, Rao J K, Gilkeson G S, Ruiz P, Eicher E M, Pisetsky D S, Matsuzawa A, Rochelle J M, Seldin M F (1992). Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci. J Exp Med, 176(6): 1645–1656

DOI

91
Whitby D J, Ferguson M W (1991). Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol, 147(1): 207–215

DOI

92
Williams B O, Insogna K L (2009). Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. Journal of Bone and Mineral Research: 24: 171–178

93
Xu H, Christmas P, Wu X R, Wewer U M, Engvall E (1994). Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci USA, 91(12): 5572–5576

DOI

94
Yu H, Baylink D J, Masinde G L, Li R, Nguyen B, Davidson H M, Xu S, Mohan S (2007). Mouse chromosome 9 quantitative trait loci for soft tissue regeneration: congenic analysis and fine mapping. Wound Repair and Regeneration, 15: 922–927

95
Yu H, Mohan S, Masinde GL, Baylink D J (2005). Mapping the dominant wound healing and soft tissue regeneration QTL in MRL x CAST. Mammalian Genome, 16: 918–924

96
Yuan R, Tsaih S W, Petkova S B, Marin de Evsikova C, Xing S, Marion M A, Bogue M A, Mills K D, Peters L L, Bult C J, (2009). Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell, 8(3): 277–287

DOI

97
Ziv E, Hu D (2011). Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev, 10(2): 201–204

DOI

Outlines

/