REVIEW

Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease

  • Li ZUO , 1 ,
  • Allison H. HALLMAN 1 ,
  • Marvin K. YOUSIF 1 ,
  • Michael T. CHIEN 2
Expand
  • 1. Molecular Physiology and Biophysics Laboratory, Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
  • 2. Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA

Received date: 10 Sep 2012

Accepted date: 14 Oct 2012

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Chronic obstructive pulmonary disease (COPD) is a highly relevant disorder that induces respiratory muscle dysfunction. One prevalent symptom of COPD is resistive breathing which causes respiratory muscle to significantly increase the magnitude of contractions, resulting in reactive oxygen species (ROS) formation and oxidative stress. Through cellular signaling cascades, ROS activate molecules such as mitogen-activated protein kinases and nuclear factor-κB. These signaling molecules stimulate the release of cytokines which in turn cause damage to the diaphragm, involving sarcomeric disruptions. In response to COPD induced fatigue, the diaphragm undergoes a beneficial fiber-type shift to type I muscle fibers, which are more resistant to hypoxia than type II fibers. The lung hyperinflation that occurs in COPD also causes intercostal muscle dysfunction, thereby exacerbating COPD symptoms. In addition, COPD is known to have a connection with heart failure, diabetes, and aging, further decreasing respiratory function. Currently, there is no cure for this disorder. Nevertheless, various potential therapeutic strategies focusing on respiratory muscle have been identified including respiratory muscle training, β2-agonist therapy, and lung volume reduction surgery. In this review, we will outline the role of COPD, oxidative stress, and related complications in respiratory muscle dysfunction.

Cite this article

Li ZUO , Allison H. HALLMAN , Marvin K. YOUSIF , Michael T. CHIEN . Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease[J]. Frontiers in Biology, 2012 , 7(6) : 506 -513 . DOI: 10.1007/s11515-012-1251-x

Acknowledgments

This work is supported by grants of OU General Fund G110 and Research Excellence Fund of Biomedical Research. We thank the assistance from Dr. Arik Dvir, William Roberts, and Juliana Kishek.
1
ACCP/AACVPR evidence-based guidelines (1997). Pulmonary rehabilitation: joint ACCP/AACVPR evidence-based guidelines. ACCP/AACVPR pulmonary rehabilitation guidelines panel. American College of Chest Physicians. American Association of Cardiovascular and Pulmonary Rehabilitation. Chest, 112: 1363–1396

2
Allen R G, Tresini M (2000). Oxidative stress and gene regulation. Free Radic Biol Med, 28(3): 463–499

DOI PMID

3
Anthonisen N R, Connett J E, Kiley J P, Altose M D, Bailey W C, Buist A S, Conway W A Jr, Enright P L, Kanner R E, O’Hara P, Owens G R, Scanlon P D, Tashkin D P, Wise R A, Altose M D, Connors A F, Redline S, Deitz C, Rakos R F, Conway W A, DeHorn A, Ward J C, Hoppe-Ryan C S, Jentons R L, Reddick J A, Sawicki C, Wise R A, Permutt S, Rand C S, Scanlon P D, Davis L J, Hurt R D, Miller R D, Williams D E, Caron G M, Lauger G G, Toogood S M, Buist A S, Bjornson W M, Johnson L R, Bailey W C, Brooks C M, Dolce J J, Higgins D M, Johnson M A, Lorish C D, Martin B A, Tashkin D P, Coulson A H, Gong H, Harber P I, Li V C, Roth M, Nides M A, Simmons M S, Zuniga I, Anthonisen N R, Manfreda J, Murray R P, Rempel-Rossum S C, Stoyko J M, Connett J E, Kjelsberg M O, Cowles M K, Durkin D A, Enright P L, Kurnow K J, Lee W W, Lindgren P G, Mongin S J, O’Hara P, Voelker H T, Waller L A, Owens G R, Rogers R M, Johnston J J, Pope F P, Vitale F M, Kanner R E, Rigdon M A, Benton K C, Grant P M, Becklake M, Burrows B, Cleary P, Kimbel P, Nett L, Ockene J K, Senior R M, Snider G L, Spitzer W, Williams O D, Hurd S S, Kiley J P, Wu M C, Ayres S M, Hyatt R E, Mason B A (1994). Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA, 272(19): 1497–1505

DOI PMID

4
Armstrong R B (1990). Initial events in exercise-induced muscular injury. Med Sci Sports Exerc, 22(4): 429–435

PMID

5
Barreiro E, de la Puente B, Minguella J, Corominas J M, Serrano S, Hussain S N, Gea J (2005). Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 171(10): 1116–1124

DOI PMID

6
Barreiro E, Peinado V I, Galdiz J B, Ferrer E, Marin-Corral J, Sánchez F, Gea J, Barberà J A, the ENIGMA in COPD Project (2010). Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med, 182(4): 477–488

DOI PMID

7
Begin P, Grassino A (1991). Inspiratory muscle dysfunction and chronic hypercapnia in chronic obstructive pulmonary disease. Am Rev Respir Dis, 143(5 Pt 1): 905–912

PMID

8
Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, Simonneau G, Benito S, Gasparetto A, Lemaire F, Isabey D, Harf A (1995). Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med, 333(13): 817–822

DOI PMID

9
Burge P S, Calverley P M, Jones P W, Spencer S, Anderson J A, Maslen T K (2000). Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ, 320(7245): 1297–1303

DOI PMID

10
Cannon J G, St Pierre B A (1998). Cytokines in exertion-induced skeletal muscle injury. Mol Cell Biochem, 179(1-2): 159–167

DOI PMID

11
Cavalcante A G, de Bruin P F (2009). The role of oxidative stress in COPD: current concepts and perspectives. J Bras Pneumol, 35(12): 1227–1237

PMID

12
Cooper J D, Trulock E P, Triantafillou A N, Patterson G A, Pohl M S, Deloney P A, Sundaresan R S, Roper C L (1995). Bilateral pneumectomy (volume reduction) for chronic obstructive pulmonary disease. J Thorac Cardiovasc Surg, 109: 106–116; discussion 116–119

13
Covey M K, Larson J L, Wirtz S E, Berry J K, Pogue N J, Alex C G, Patel M (2001). High-intensity inspiratory muscle training in patients with chronic obstructive pulmonary disease and severely reduced function. J Cardiopulm Rehabil, 21(4): 231–240

DOI PMID

14
Crisafulli E, Costi S, Fabbri L M, Clini E M (2007). Respiratory muscles training in COPD patients. Int J Chron Obstruct Pulmon Dis, 2(1): 19–25

DOI PMID

15
Curkendall S M, DeLuise C, Jones J K, Lanes S, Stang M R, Goehring E Jr, She D (2006). Cardiovascular disease in patients with chronic obstructive pulmonary disease, Saskatchewan Canada cardiovascular disease in COPD patients. Ann Epidemiol, 16(1): 63–70

DOI PMID

16
Cutler R G (2005). Oxidative stress and aging: catalase is a longevity determinant enzyme. Rejuvenation Res, 8(3): 138–140

DOI PMID

17
Dal Vecchio L, Polese G, Poggi R, Rossi A (1990). “Intrinsic” positive end-expiratory pressure in stable patients with chronic obstructive pulmonary disease. Eur Respir J, 3(1): 74–80

PMID

18
De Troyer A, Kirkwood P A, Wilson T A (2005). Respiratory action of the intercostal muscles. Physiol Rev, 85(2): 717–756

DOI PMID

19
De Troyer A, Wilson T A (2009). Effect of acute inflation on the mechanics of the inspiratory muscles. J Appl Physiol, 107(1): 315–323

DOI PMID

20
Doucet M, Debigaré R, Joanisse D R, Côté C, Leblanc P, Grégoire J, Deslauriers J, Vaillancourt R, Maltais F (2004). Adaptation of the diaphragm and the vastus lateralis in mild-to-moderate COPD. Eur Respir J, 24(6): 971–979

DOI PMID

21
Eid A A, Ionescu A A, Nixon L S, Lewis-Jenkins V, Matthews S B, Griffiths T L, Shale D J (2001). Inflammatory response and body composition in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 164(8 Pt 1): 1414–1418

PMID

22
Ferguson G T (2006). Why does the lung hyperinflate? Proc Am Thorac Soc, 3(2): 176–179

DOI PMID

23
Fessler H E, Permutt S (1998). Lung volume reduction surgery and airflow limitation. Am J Respir Crit Care Med, 157(3 Pt 1): 715–722

PMID

24
Friden J, Sjöström M, Ekblom B (1983). Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med, 4(3): 170–176

DOI PMID

25
Gea J, Barreiro E (2008). Update on the mechanisms of muscle dysfunction in COPD. Arch Bronconeumol, 44(6): 328–337

DOI PMID

26
Groneberg D A, Chung K F (2004). Models of chronic obstructive pulmonary disease. Respir Res, 5(1): 18

DOI PMID

27
Guerri R, Gayete A, Balcells E, Ramirez-Sarmiento A, Vollmer I, Garcia-Aymerich J, Gea J, Orozco-Levi M (2010). Mass of intercostal muscles associates with risk of multiple exacerbations in COPD. Respir Med, 104(3): 378–388

DOI PMID

28
Haluszka J, Chartrand D A, Grassino A E, Milic-Emili J (1990). Intrinsic PEEP and arterial PCO2 in stable patients with chronic obstructive pulmonary disease. Am Rev Respir Dis, 141(5 Pt 1): 1194–1197

PMID

29
Ito K, Barnes P J (2009). COPD as a disease of accelerated lung aging. Chest, 135(1): 173–180

DOI PMID

30
Janssens J P, Pache J C, Nicod L P (1999). Physiological changes in respiratory function associated with ageing. Eur Respir J, 13(1): 197–205

DOI PMID

31
Kang M J, Lee C G, Lee J Y, Dela Cruz C S, Chen Z J, Enelow R, Elias J A (2008). Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest, 118(8): 2771–2784

PMID

32
Klimathianaki M, Vaporidi K, Georgopoulos D (2011). Respiratory muscle dysfunction in COPD: from muscles to cell. Curr Drug Targets, 12(4): 478–488

DOI PMID

33
Kosmidou I, Vassilakopoulos T, Xagorari A, Zakynthinos S, Papapetropoulos A, Roussos C (2002). Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. Am J Respir Cell Mol Biol, 26(5): 587–593

PMID

34
Lando Y, Boiselle P M, Shade D, Furukawa S, Kuzma A M, Travaline J M, Criner G J (1999). Effect of lung volume reduction surgery on diaphragm length in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 159(3): 796–805

PMID

35
Laoutaris I D, Adamopoulos S, Manginas A, Panagiotakos D B, Kallistratos M S, Doulaptsis C, Kouloubinis A, Voudris V, Pavlides G, Cokkinos D V, Dritsas A (2012). Benefits of combined aerobic/resistance/inspiratory training in patients with chronic heart failure. A complete exercise model? A prospective randomised study. Int J Cardiol, doi: 10.1016/j.ijcard.2012.05.019

36
Laude E A, Duffy N C, Baveystock C, Dougill B, Campbell M J, Lawson R, Jones P W, Calverley P M (2006). The effect of helium and oxygen on exercise performance in chronic obstructive pulmonary disease: a randomized crossover trial. Am J Respir Crit Care Med, 173: 865–870

37
Levine S, Gregory C, Nguyen T, Shrager J, Kaiser L, Rubinstein N, Dudley G (2002). Bioenergetic adaptation of individual human diaphragmatic myofibers to severe COPD. J Appl Physiol, 92(3): 1205–1213

PMID

38
Levine S, Kaiser L, Leferovich J, Tikunov B (1997). Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med, 337(25): 1799–1806

DOI PMID

39
Loring S H, Garcia-Jacques M, Malhotra A (2009). Pulmonary characteristics in COPD and mechanisms of increased work of breathing. J Appl Physiol, 107(1): 309–314

DOI PMID

40
Lotters F, van Tol B, Kwakkel G, Gosselink R (2002). Effects of controlled inspiratory muscle training in patients with COPD: a meta-analysis. Eur Respir J, 20(3): 570–576

DOI PMID

41
Louvaris Z, Zakynthinos S, Aliverti A, Habazettl H, Vasilopoulou M, Andrianopoulos V, Wagner H, Wagner P, Vogiatzis I (2012). Heliox increases quadriceps muscle oxygen delivery during exercise in COPD patients with and without dynamic hyperinflation. J Appl Physiol, 113(7): 1012–1023

DOI PMID

42
Mador M J (2002). Muscle mass, not body weight, predicts outcome in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 166(6): 787–789

DOI PMID

43
Mannino D M, Ford E S, Redd S C (2003). Obstructive and restrictive lung disease and markers of inflammation: data from the Third National Health and Nutrition Examination. Am J Med, 114(9): 758–762

DOI PMID

44
Mascarenhas J, Azevedo A, Bettencourt P (2010). Coexisting chronic obstructive pulmonary disease and heart failure: implications for treatment, course and mortality. Curr Opin Pulm Med, 16(2): 106–111

DOI PMID

45
McCullough P A, Hollander J E, Nowak R M, Storrow A B, Duc P, Omland T, McCord J, Herrmann H C, Steg P G, Westheim A, Knudsen C W, Abraham W T, Lamba S, Wu A H, Perez A, Clopton P, Krishnaswamy P, Kazanegra R, Maisel A S, Investigators B N P M S, the BNP Multinational Study Investigators (2003). Uncovering heart failure in patients with a history of pulmonary disease: rationale for the early use of B-type natriuretic peptide in the emergency department. Acad Emerg Med, 10(3): 198–204

DOI PMID

46
Meecham Jones D J, Paul E A, Jones P W, Wedzicha J A (1995). Nasal pressure support ventilation plus oxygen compared with oxygen therapy alone in hypercapnic COPD. Am J Respir Crit Care Med, 152(2): 538–544

PMID

47
Mercadier J J, Schwartz K, Schiaffino S, Wisnewsky C, Ausoni S, Heimburger M, Marrash R, Pariente R, Aubier M (1998). Myosin heavy chain gene expression changes in the diaphragm of patients with chronic lung hyperinflation. Am J Physiol, 274(4 Pt 1): L527–L534

PMID

48
Meyer T J, Hill N S (1994). Noninvasive positive pressure ventilation to treat respiratory failure. Ann Intern Med, 120(9): 760–770

PMID

49
Mizuno M (1991). Human respiratory muscles: fibre morphology and capillary supply. Eur Respir J, 4(5): 587–601

PMID

50
Mohanraj P, Merola A J, Wright V P, Clanton T L (1998). Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. J Appl Physiol, 84(6): 1960–1966

PMID

51
Moon C, Lee Y J, Park H J, Chong Y H, Kang J L (2010). N-acetylcysteine inhibits RhoA and promotes apoptotic cell clearance during intense lung inflammation. Am J Respir Crit Care Med, 181(4): 374–387

DOI PMID

52
Mroz R M, Szulakowski P, Pierzchala W, Chyczewska E, MacNee W (2006). Pathogenesis of chronic obstructive pulmonary disease. Cellular mechanisms (part I). Wiad Lek, 59(1–2): 92–96

PMID

53
Naunheim K S, Wood D E, Mohsenifar Z, Sternberg A L, Criner G J, DeCamp M M, Deschamps C C, Martinez F J, Sciurba F C, Tonascia J, Fishman A P, the National Emphysema Treatment Trial Research Group (2006). Long-term follow-up of patients receiving lung-volume-reduction surgery versus medical therapy for severe emphysema by the National Emphysema Treatment Trial Research Group. Ann Thorac Surg, 82(2): 431–443

DOI PMID

54
Nava S, Crotti P, Gurrieri G, Fracchia C, Rampulla C (1992). Effect of a beta 2-agonist (broxaterol) on respiratory muscle strength and endurance in patients with COPD with irreversible airway obstruction. Chest, 101(1): 133–140

DOI PMID

55
Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas J M, Gea J (2001). Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 164(9): 1734–1739

PMID

56
Ottenheijm C A, Heunks L M, Dekhuijzen P N (2007). Diaphragm muscle fiber dysfunction in chronic obstructive pulmonary disease: toward a pathophysiological concept. Am J Respir Crit Care Med, 175(12): 1233–1240

DOI PMID

57
Ottenheijm C A, Heunks L M, Dekhuijzen R P (2008). Diaphragm adaptations in patients with COPD. Respir Res, 9(1): 12

DOI PMID

58
Ottenheijm C A, Heunks L M, Sieck G C, Zhan W Z, Jansen S M, Degens H, de Boo T, Dekhuijzen P N (2005). Diaphragm dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 172(2): 200–205

DOI PMID

59
Pauwels R A, Löfdahl C G, Laitinen L A, Schouten J P, Postma D S, Pride N B, Ohlsson S V, the European Respiratory Society Study on Chronic Obstructive Pulmonary Disease (1999). Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med, 340(25): 1948–1953

DOI PMID

60
Pitsiou G, Kyriazis G, Hatzizisi O, Argyropoulou P, Mavrofridis E, Patakas D (2002). Tumor necrosis factor-alpha serum levels, weight loss and tissue oxygenation in chronic obstructive pulmonary disease. Respir Med, 96(8): 594–598

DOI PMID

61
Puente-Maestu L, Pérez-Parra J, Godoy R, Moreno N, Tejedor A, González-Aragoneses F, Bravo J L, Alvarez F V, Camaño S, Agustí A (2009). Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J, 33(5): 1045–1052

DOI PMID

62
Ramirez-Sarmiento A, Orozco-Levi M, Guell R, Barreiro E, Hernandez N, Mota S, Sangenis M, Broquetas J M, Casan P, Gea J (2002). Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes. Am J Respir Crit Care Med, 166(11): 1491–1497

DOI PMID

63
Rana J S, Mittleman M A, Sheikh J, Hu F B, Manson J E, Colditz G A, Speizer F E, Barr R G, Camargo C A Jr (2004). Chronic obstructive pulmonary disease, asthma, and risk of type 2 diabetes in women. Diabetes Care, 27(10): 2478–2484

DOI PMID

64
Reid M B (2001). Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol, 90(2): 724–731

PMID

65
Reid M B, Haack K E, Franchek K M, Valberg P A, Kobzik L, West M S (1992). Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol, 73(5): 1797–1804

PMID

66
Rennard S I, Vestbo J (2008). Natural histories of chronic obstructive pulmonary disease. Proc Am Thorac Soc, 5(9): 878–883

DOI PMID

67
Ribera F, N’Guessan B, Zoll J, Fortin D, Serrurier B, Mettauer B, Bigard X, Ventura-Clapier R, Lampert E (2003). Mitochondrial electron transport chain function is enhanced in inspiratory muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 167(6): 873–879

DOI PMID

68
Roisin R R, Vestbo J (2011). Global initiative for chronic obstructive lung disease. GOLD: 1–74

69
Rutten F H, Cramer M J, Grobbee D E, Sachs A P, Kirkels J H, Lammers J W, Hoes A W (2005). Unrecognized heart failure in elderly patients with stable chronic obstructive pulmonary disease. Eur Heart J, 26(18): 1887–1894

DOI PMID

70
Sanchez J, Bastien C, Medrano G, Riquet M, Derenne J P (1984). Metabolic enzymatic activities in the diaphragm of normal men and patients with moderate chronic obstructive pulmonary disease. Bull Eur Physiopathol Respir, 20(6): 535–540

PMID

71
Schols A M (2003). Nutritional and metabolic modulation in chronic obstructive pulmonary disease management. Eur Respir J Suppl, 46: 81s–86s

DOI PMID

72
Scott A, Wang X, Road J D, Reid W D (2006). Increased injury and intramuscular collagen of the diaphragm in COPD: autopsy observations. Eur Respir J, 27(1): 51–59

DOI PMID

73
Shindoh C, DiMarco A, Thomas A, Manubay P, Supinski G (1990). Effect of N-acetylcysteine on diaphragm fatigue. J Appl Physiol, 68(5): 2107–2113

PMID

74
Sidney S, Sorel M, Quesenberry C P Jr, DeLuise C, Lanes S, Eisner M D (2005). COPD and incident cardiovascular disease hospitalizations and mortality: Kaiser Permanente Medical Care Program. Chest, 128(4): 2068–2075

DOI PMID

75
Sigala I, Zacharatos P, Toumpanakis D, Michailidou T, Noussia O, Theocharis S, Roussos C, Papapetropoulos A, Vassilakopoulos T (2011). MAPKs and NF-κB differentially regulate cytokine expression in the diaphragm in response to resistive breathing: the role of oxidative stress. Am J Physiol Regul Integr Comp Physiol, 300(5): R1152–R1162

DOI PMID

76
Smith W N, Dirks A, Sugiura T, Muller S, Scarpace P, Powers S K (2002). Alteration of contractile force and mass in the senescent diaphragm with beta(2)-agonist treatment. J Appl Physiol, 92(3): 941–948

PMID

77
Son Y O, Wang L, Poyil P, Budhraja A, Hitron J A, Zhang Z, Lee J C, Shi X (2012). Cadmium induces carcinogenesis in BEAS-2b cells through ROS-dependent activation of PI3K/AKT/GSK-3beta/beta-catenin signaling. Toxicol Appl Pharmacol, doi: S0041–008X(12)00329–8 [pii] 10.1016/j.taap.2012.07.028

78
Stauber W T, Smith C A, Miller G R, Stauber F D (2000). Recovery from 6 weeks of repeated strain injury to rat soleus muscles. Muscle Nerve, 23(12): 1819–1825

DOI PMID

79
Stubbings A K, Moore A J, Dusmet M, Goldstraw P, West T G, Polkey M I, Ferenczi M A (2008). Physiological properties of human diaphragm muscle fibres and the effect of chronic obstructive pulmonary disease. J Physiol, 586(10): 2637–2650

DOI PMID

80
Testelmans D, Crul T, Maes K, Agten A, Crombach M, Decramer M, Gayan-Ramirez G (2010). Atrophy and hypertrophy signalling in the diaphragm of patients with COPD. Eur Respir J, 35(3): 549–556

DOI PMID

81
Tidball J G (2005). Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol, 288(2): R345–R353

DOI PMID

82
Van Der Heijden H F, Dekhuijzen P N, Folgering H, Ginsel L A, Van Herwaarden C L (1998). Long-term effects of clenbuterol on diaphragm morphology and contractile properties in emphysematous hamsters. J Appl Physiol, 85(1): 215–222

PMID

83
Vestbo J, Sørensen T, Lange P, Brix A, Torre P, Viskum K (1999). Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet, 353(9167): 1819–1823

DOI PMID

84
Watz H, Waschki B, Meyer T, Kretschmar G, Kirsten A, Claussen M, Magnussen H (2010). Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation. Chest, 138(1): 32–38

PMID

85
Wijnhoven H J, Heunks L M, Geraedts M C, Hafmans T, Viña J R, Dekhuijzen P N (2006). Oxidative and nitrosative stress in the diaphragm of patients with COPD. Int J Chron Obstruct Pulmon Dis, 1(2): 173–179

DOI PMID

86
Willems M E, Stauber W T (2001). Force deficits after repeated stretches of activated skeletal muscles in female and male rats. Acta Physiol Scand, 172(1): 63–67

DOI PMID

87
Wouters E F (2000). Nutrition and metabolism in COPD. Chest, 117(5 Suppl 1): 274S–280S

DOI PMID

88
Zuo L, Nogueira L, Hogan M C (2011a). Reactive oxygen species formation during tetanic contractions in single isolated Xenopus myofibers. J Appl Physiol, 111(3): 898–904

DOI PMID

89
Zuo L, Roberts W J, Tolomello R C, Goins A T (2011b). Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling. Front Biol, doi: 10.1007/s11515-012-1225-z

Outlines

/