Acid stress response in environmental and clinical strains of enteric bacteria
Received date: 18 Oct 2011
Accepted date: 16 Jan 2012
Published date: 01 Dec 2012
Copyright
The success of many enteric bacteria is hinged on the ability to tolerate environmental stress such as extreme acidity. The acid stress response (ASR) has been investigated in many enteric bacteria and has been shown to involve variable expression of a broad spectrum of genes involved in transcriptional regulation, metabolism, colonization and virulence; representing a linkage between acid tolerance and pathogenicity. Though the majority of ASR studies have been conducted in laboratory conditions and from the perspective of pathogenicity, the role of environmental reservoirs on acid adaptation has recently emerged as an important aspect of pathogenic microbial ecology. This mini-review profiles ASR in three opportunistic enteric pathogens and synthesizes recent work pertaining to the study of this dynamic response.
Gabriel J. SWENSON , J. STOCHASTIC , Franklyn F. BOLANDER, Jr. , Richard A. LONG . Acid stress response in environmental and clinical strains of enteric bacteria[J]. Frontiers in Biology, 2012 , 7(6) : 495 -505 . DOI: 10.1007/s11515-012-1191-5
1 |
Abuaita B H, Withey J H (2009). Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun, 77(9): 4111–4120
|
2 |
Ahmer B M M (2004). Cell-to-cell signaling in Escherichia coli and Salmonella enterica. Mol Microbiol, 52(4): 933–945
|
3 |
Angelichio M J, Merrell D S, Camilli A (2004). Spatiotemporal analysis of acid adaptation-mediated Vibrio cholerae hyperinfectivity. Infect Immun, 72(4): 2405–2407
|
4 |
Arnold C N, McElhanon J, Lee A, Leonhart R, Siegele D A (2001). Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol, 183(7): 2178–2186
|
5 |
Assadian N W, Fenn L B, Flores-Ortiz M A, Ali A S (1999). Spatial variability of solutes in a pecan orchard surface-irrigated with untreated effluents in the upper Rio Grande River basin. Agric Water Manag, 42(2): 143–156
|
6 |
Bader M W, Navarre W W, Shiau W, Nikaido H, Frye J G, McClelland M, Fang F C, Miller S I (2003). Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol, 50(1): 219–230
|
7 |
Baker-Austin C, Dopson M (2007). Life in acid: pH homeostasis in acidophiles. Trends Microbiol, 15(4): 165–171
|
8 |
Baudart J, Grabulos J, Barusseau J P, Lebaron P (2000). Salmonella spp. and fecal coliform loads in coastal waters from a point vs. nonpoint source of pollution. J Environ Qual, 29(1): 241–250
|
9 |
Beales N (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr Rev Food Sci F, 3(1): 1–20
|
10 |
Bearson B L, Wilson L, Foster J W (1998). A low pH-Inducible, PhoPQ-Dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress (vol 180, pg 2409, 1998). J Bacteriol, 180(14): 3734–3734
|
11 |
Bergholz T M, Vanaja S K, Whittam T S (2009). Gene expression induced in Escherichia coli O157:H7 upon exposure to model apple juice. Appl Environ Microbiol, 75(11): 3542–3553
|
12 |
Beyhan S, Tischler A D, Camilli A, Yildiz F H (2006). Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol, 188(10): 3600–3613
|
13 |
Bhagwat A A (2006). Microbiological Safety of Fresh-cut Produce: Where Are We Now? American Society for Microbiology Press, 121–165
|
14 |
Bhagwat A A, Bhagwat M (2008). Methods and tools for comparative genomics of foodborne pathogens. Foodborne Pathog Dis, 5(4): 487–497
|
15 |
Bhagwat A A, Chan L, Han R, Tan J, Kothary M, Jean-Gilles J, Tall B D (2005). Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes. Infect Immun, 73(8): 4993–5003
|
16 |
Blokesch M, Schoolnik G K (2007). Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog, 3(6): e81
|
17 |
Brandl M T (2006). Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol, 44(1): 367–392
|
18 |
Butler S M, Nelson E J, Chowdhury N, Faruque S M, Calderwood S B, Camilli A (2006). Cholera stool bacteria repress chemotaxis to increase infectivity. Mol Microbiol, 60(2): 417–426
|
19 |
Capozzi V, Fiocco D, Amodio M L, Gallone A, Spano G (2009). Bacterial stressors in minimally processed food. Int J Mol Sci, 10(7): 3076–3105
|
20 |
Chang Y Y, Cronan J E Jr (1999). Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol, 33(2): 249–259
|
21 |
Cheville A M, Arnold K W, Buchrieser C, Cheng C M, Kaspar C W (1996). rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl Environ Microbiol, 62(5): 1822–1824
|
22 |
Chiang S L, Mekalanos J J (1998). Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol, 27(4): 797–805
|
23 |
Choi S H, Baumler D J, Kaspar C W (2000). Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microbiol, 66(9): 3911–3916
|
24 |
Ciaramella M, Napoli A, Rossi M (2005). Another extreme genome: how to live at pH 0. Trends Microbiol, 13(2): 49–51
|
25 |
Colwell R R (1996). Global climate and infectious disease: the cholera paradigm. Science, 274(5295): 2025–2031
|
26 |
Cotter P D, Hill C (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev, 67(3): 429–453
|
27 |
De Angelis M, Gobbetti M (2004). Environmental stress responses in Lactobacillus: a review. Proteomics, 4(1): 106–122
|
28 |
Dong T, Schellhorn H E (2010). Role of RpoS in virulence of pathogens. Infect Immun, 78(3): 887–897
|
29 |
Doyle M P, Erickson M C (2008). Summer meeting 2007—the problems with fresh produce: an overview. J Appl Microbiol, 105(2): 317–330
|
30 |
Faruque S M, Biswas K, Udden S M N, Ahmad Q S, Sack D A, Nair G B, Mekalanos J J (2006). Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci USA, 103(16): 6350–6355
|
31 |
Faucher S P, Porwollik S, Dozois C M, McClelland M, Daigle F (2006). Transcriptome of Salmonella enterica Serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci USA, 103(6): 1906–1911
|
32 |
Flahaut S, Hartke A, Giard J C, Benachour A, Boutibonnes P, Auffray Y (1996). Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett, 138(1): 49–54
|
33 |
Foster J W (1991). Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol, 173(21): 6896–6902
|
34 |
Foster J W (1993). The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol, 175(7): 1981–1987
|
35 |
Foster J W (1999). When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol, 2(2): 170–174
|
36 |
Foster J W (2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol, 2(11): 898–907
|
37 |
Foster J W, Hall H K (1990). Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol, 172(2): 771–778
|
38 |
Foster J W, Spector M P (1995). How Salmonella survive against the odds. Annu Rev Microbiol, 49(1): 145–174
|
39 |
Foster P L (2007). Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol, 42(5): 373–397
|
40 |
Frees D, Varmanen P, Ingmer H (2001). Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol, 41(1): 93–103
|
41 |
Frees D, Vogensen F K, Ingmer H (2003). Identification of proteins induced at low pH in Lactococcus lactis. Int J Food Microbiol, 87(3): 293–300
|
42 |
Garcia S S, Ake C, Clement B, Huebner H J, Donnelly K C, Shalat S L (2001). Initial results of environmental monitoring in the Texas Rio Grande Valley. Environ Int, 26(7–8): 465–474
|
43 |
Goel A K, Jiang S C (2010). Genetic determinants of virulence, antibiogram and altered biotype among the Vibrio cholerae O1 isolates from different cholera outbreaks in India. Infect Genet Evol, 10(6): 814–819
|
44 |
Goodson M, Rowbury R J (1989). Resistance of acid-habituated Escherichia coli to organic acids and its medical and applied significance. Lett Appl Microbiol, 8(6): 211–214.
|
45 |
Greenacre E J, Lucchini S, Hinton J C D, Brocklehurst T F (2006). The lactic acid-induced acid tolerance response in Salmonella enterica Serovar Typhimurium induces sensitivity to hydrogen peroxide. Appl Environ Microbiol, 72(8): 5623–5625
|
46 |
Hanning I B, Nutt J D, Ricke S C (2009). Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. Foodborne Pathog Dis, 6(6): 635–648
|
47 |
Hayes E T, Wilks J C, Sanfilippo P, Yohannes E, Tate D P, Jones B D, Radmacher M D, BonDurant S S, Slonczewski J L (2006). Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol, 6(1): 89
|
48 |
Heidelberg J F, Eisen J A, Nelson W C, Clayton R A, Gwinn M L, Dodson R J, Haft D H, Hickey E K, Peterson J D, Umayam L, Gill S R, Nelson K E, Read T D, Tettelin H, Richardson D, Ermolaeva M D, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann R D, Nierman W C, White O, Salzberg S L, Smith H O, Colwell R R, Mekalanos J J, Venter J C, Fraser C M (2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature, 406(6795): 477–483
|
49 |
Hersh B M, Farooq F T, Barstad D N, Blankenhorn D L, Slonczewski J L (1996). A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol, 178(13): 3978–3981
|
50 |
Hommais F, Krin E, Coppée J Y, Lacroix C, Yeramian E, Danchin A, Bertin P (2004). GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology, 150(1): 61–72
|
51 |
Hsieh J L, Fries J S, Noble R T (2007). Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. Ecol Appl, 17(5): S102–S109
|
52 |
Iyer R, Williams C, Miller C (2003). Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol, 185(22): 6556–6561
|
53 |
Johnson M D, Burton N A, Gutierrez B, Painter K, Lund P A (2011). RcsB is required for inducible acid resistance in E. coli and acts at gadE dependent and independent promoters, J Bacteriol online
|
54 |
Jiang S C, Louis V, Choopun N, Sharma A, Huq A, Colwell R R (2000). Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol, 66(1): 140–147
|
55 |
Joelsson A, Kan B, Zhu J (2007). Quorum sensing enhances the stress response in Vibrio cholerae. Appl Environ Microbiol, 73(11): 3742–3746
|
56 |
Kamruzzaman M, Udden S M N, Cameron D E, Calderwood S B, Nair G B, Mekalanos J J, Faruque S M (2010). Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc Natl Acad Sci USA, 107(4): 1588–1593
|
57 |
Kang Y S, Weber K D, Qiu Y, Kiley P J, Blattner F R (2005). Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol, 187(3): 1135–1160
|
58 |
King T, Lucchini S, Hinton J C D, Gobius K (2010). Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses App. Environ Microbiol, 76(19): 6514–6528
|
59 |
Kirkpatrick C, Maurer L M, Oyelakin N E, Yoncheva Y N, Maurer R, Slonczewski J L (2001). Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol, 183(21): 6466–6477
|
60 |
Kirn T J, Jude B A, Taylor R K (2005). A colonization factor links Vibrio cholerae environmental survival and human infection. Nature, 438(7069): 863–866
|
61 |
Kirschner A K T, Schlesinger J, Farnleitner A H, Hornek R, Süss B, Golda B, Herzig A, Reitner B (2008). Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: dependence on temperature and dissolved organic carbon quality. Appl Environ Microbiol, 74(7): 2004–2015
|
62 |
Kitko R D, Wilks J C, Garduque G M, Slonczewski J L (2010). Osmolytes contribute to pH homeostasis of Escherichia coli. PLoS ONE, 5(4): e10078
|
63 |
Koutsoumanis K P, Kendall P A, Sofos J N (2003). Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl Environ Microbiol, 69(12): 7514–7516
|
64 |
Koutsoumanis K P, Sofos J N (2004). Comparative acid stress response of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium after habituation at different pH conditions. Lett Appl Microbiol, 38(4): 321–326
|
65 |
Kovacikova G, Lin W, Skorupski K (2010). The LysR-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J Bacteriol, 192(16): 4181–4191
|
66 |
Kovacikova G, Skorupski K (2002). Binding site requirements of the virulence gene regulator AphB: differential affinities for the Vibrio cholerae classical and El Tor tcpPH promoters. Mol Microbiol, 44(2): 533–547
|
67 |
Krin E, Danchin A, Soutourina O (2010a). Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol, 10(1): 273
|
68 |
Krin E, Danchin A, Soutourina O (2010b). RcsB plays a central role in H-NS-dependent regulation of motility and acid stress resistance in Escherichia coli. Res Microbiol, 161(5): 363–371
|
69 |
Leyer G J, Johnson E A (1992). Acid adaptation promotes survival of Salmonella spp. in cheese. Appl Environ Microbiol, 58(6): 2075–2080
|
70 |
Leyer G J, Johnson E A (1993). Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol, 59(6): 1842–1847
|
71 |
Li C C, Crawford J A, DiRita V J, Kaper J B (2000). Molecular cloning and transcriptional regulation of ompT, a ToxR-repressed gene in Vibrio cholerae. Mol Microbiol, 35(1): 189–203
|
72 |
Lin J S, Lee I S, Frey J, Slonczewski J L, Foster J W (1995). Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol, 177(14): 4097–4104
|
73 |
Lin J S, Smith M P, Chapin K C, Baik H S, Bennett G N, Foster J W (1996). Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol, 62(9): 3094–3100
|
74 |
López-Solanilla E, García-Olmedo F, Rodríguez-Palenzuela P (1998). Inactivation of the sapA to sapF locus of Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogenesis. Plant Cell, 10(6): 917–924
|
75 |
López-Solanilla E, Llama-Palacios A, Collmer A, García-Olmedo F, Rodríguez-Palenzuela P (2001). Relative effects on virulence of mutations in the sap, pel, and hrp loci of Erwinia chrysanthemi. Mol Plant Microbe Interact, 14(3): 386–393
|
76 |
Ma Z, Gong S M, Richard H, Tucker D L, Conway T, Foster J W (2003). GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol, 49(5): 1309–1320
|
77 |
Ma Z, Masuda N, Foster J W (2004). Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol, 186(21): 7378–7389
|
78 |
Masuda N, Church G M (2003). Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol, 48(3): 699–712
|
79 |
Mathur J, Davis B M, Waldor M K (2007). Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway. Mol Microbiol, 63(3): 848–858
|
80 |
Mathur J, Waldor M K (2004). The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun, 72(6): 3577–3583
|
81 |
Matson J S, Withey J H, DiRita V J (2007). Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun, 75(12): 5542–5549
|
82 |
Maurer L M, Yohannes E, Bondurant S S, Radmacher M, Slonczewski J L (2005). pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol, 187(1): 304–319
|
83 |
Merrell D S, Bailey C, Kaper J B, Camilli A (2001). The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J Bacteriol, 183(9): 2746–2754
|
84 |
Merrell D S, Butler S M, Qadri F, Dolganov N A, Alam A, Cohen M B, Calderwood S B, Schoolnik G K, Camilli A (2002a). Host-induced epidemic spread of the cholera bacterium. Nature, 417(6889): 642–645
|
85 |
Merrell D S, Camilli A (1999). The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol, 34(4): 836–849
|
86 |
Merrell D S, Camilli A (2000). Regulation of Vibrio cholerae genes required for acid tolerance by a member of the “ToxR-like” family of transcriptional regulators. J Bacteriol, 182(19): 5342–5350
|
87 |
Merrell D S, Camilli A (2002). Acid tolerance of gastrointestinal pathogens. Curr Opin Microbiol, 5(1): 51–55
|
88 |
Merrell D S, Goodrich M L, Otto G, Tompkins L S, Falkow S (2003). pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun, 71(6): 3529–3539
|
89 |
Merrell D S, Hava D L, Camilli A (2002b). Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol, 43(6): 1471–1491
|
90 |
Mols M, van Kranenburg R, Tempelaars M H, van Schaik W, Moezelaar R, Abee T (2010). Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks. Int J Food Microbiol, 137(1): 13–21
|
91 |
Nachin L, Barras F (2000). External pH: an environmental signal that helps to rationalize pel gene duplication in Erwinia chrysanthemi. Mol Plant Microbe Interact, 13(8): 882–886
|
92 |
Nalin D R (1976). Cholera, copepods, and chitinase. Lancet, 2(7992): 958–960
|
93 |
Nalin D R, Daya V, Reid A, Levine M M, Cisneros L (1979). Adsorption and growth of Vibrio cholerae on chitin. Infect Immun, 25(2): 768–770
|
94 |
Nutt J D, Pillai S D, Woodward C L, Sternes K L, Zabala-Díaz I B, Kwon Y M, Ricke S C (2003). Use of a Salmonella typhimurium hilA fusion strain to assess effects of environmental fresh water sources on virulence gene expression. Water Res, 37(14): 3319–3326
|
95 |
Nyström T (2004). Stationary-phase physiology. Annu Rev Microbiol, 58(1): 161–181
|
96 |
Padan E, Bibi E, Ito M, Krulwich T A (2005). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta, 1717(2): 67–88
|
97 |
Parra-Lopez C, Baer M T, Groisman E A (1993). Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J, 12(11): 4053–4062
|
98 |
Peterson K M (2002). Expression of Vibrio cholerae virulence genes in response to environmental signals. Curr Issues Intest Microbiol, 3(2): 29–38
|
99 |
Polen T, Rittmann D, Wendisch V F, Sahm H (2003). DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol, 69(3): 1759–1774
|
100 |
Polo F, Figueras M J, Inza I, Sala J, Fleisher J M, Guarro J (1998). Relationship between presence of Salmonella and indicators of faecal pollution in aquatic habitats. FEMS Microbiol Lett, 160 (2): 253–256
|
101 |
Price S B, Cheng C M, Kaspar C W, Wright J C, DeGraves F J, Penfound T A, Castanie-Cornet M P, Foster J W (2000). Role of rpoS in acid resistance and fecal shedding of Escherichia coli O157:H7. Appl Environ Microbiol, 66(2): 632–637
|
135 |
Price S B, Wright J C, DeGraves F J, Castanie-Comet M P, Foster J W (2004). Acid resistance systems required for survival of Escherichia coli O157: H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol, 70(8): 4792–4799
|
102 |
Prost L R, Daley M E, Le Sage V, Bader M W, Le Moual H, Klevit R E, Miller S I (2007). Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell, 26(2): 165–174
|
103 |
Provenzano D, Klose K E (2000). Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci USA, 97(18): 10220–10224
|
104 |
Pruzzo C, Vezzulli L, Colwell R R (2008). Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol, 10(6): 1400–1410
|
105 |
Rallu F, Gruss A, Ehrlich S D, Maguin E (2000). Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol, 35(3): 517–528
|
106 |
Rehfuss M Y M, Parker C T, Brandl M T (2011). Salmonella transcriptional signature in Tetrahymena phagosomes and role of acid tolerance in passage through the protist. ISME J, 5(2): 262–273
|
107 |
Reidl J, Klose K E (2002). Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev, 26(2): 125–139
|
108 |
Rhee J E, Ju H M, Park U, Park B C, Choi S H (2004). Identification of the Vibrio vulnificus cadC and Evaluation of Its Role in Acid Tolerance. J Microbiol Biotechnol, 14(5): 1093–1098
|
109 |
Richard H, Foster J W (2004). Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol, 186(18): 6032–6041
|
110 |
Richards G M, Beuchat L R (2005). Infection of cantaloupe rind with Cladosporium cladosporioides and Penicillium expansum, and associated migration of Salmonella poona into edible tissues. Int J Food Microbiol, 103(1): 1–10
|
111 |
Rowbury R J (1995). An assessment of environmental factors influencing acid tolerance and sensitivity in Escherichia coli, Salmonella spp. and other enterobacteria. Lett Appl Microbiol, 20(6): 333–337
|
112 |
Rutherford S T, van Kessel J C, Shao Y, Bassler B L (2011). AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev, 25(4): 397–408
|
113 |
Schild S, Tamayo R, Nelson E J, Qadri F, Calderwood S B, Camilli A (2007). Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe, 2(4): 264–277
|
114 |
Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski J L (1994). Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol, 176(6): 1729–1737
|
115 |
Song T, Mika F, Lindmark B, Liu Z, Schild S, Bishop A, Zhu J, Camilli A, Johansson J, Vogel J, Wai S N (2008). A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol, 70(1): 100–111
|
116 |
Stincone A, Rahman A S, Antczak P, Henderson I, Cole J, Johnson M D, Lund P (2011). A systems biology approach sheds new light on Escherichia coli acid resistance. Nucl. Acids Res. 39(17): 7512–752
|
117 |
Sun Y R, Fukamachi T, Saito H, Kobayashi H (2011). ATP requirement for acidic resistance in Escherichia coli. J Bacteriol, 193(12): 3072–3077
|
118 |
Tamayo R, Patimalla B, Camilli A (2010). Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun, 78(8): 3560–3569
|
119 |
Tischler A D, Camilli A (2004). Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol, 53(3): 857–869
|
120 |
Tischler A D, Camilli A (2005). Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun, 73(9): 5873–5882
|
121 |
Tucker D L, Tucker N, Conway T (2002). Gene expression profiling of the pH response in Escherichia coli. J Bacteriol, 184(23): 6551–6558
|
122 |
Tucker D L, Tucker N, Ma Z, Foster J W, Miranda R L, Cohen P S, Conway T (2003). Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol, 185(10): 3190–3201
|
123 |
van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich S D, Maguin E (2002). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, 82(1–4): 187–216
|
124 |
Vezzulli L, Guzmán C A, Colwell R R, Pruzzo C (2008). Dual role colonization factors connecting Vibrio cholerae’s lifestyles in human and aquatic environments open new perspectives for combating infectious diseases. Curr Opin Biotechnol, 19(3): 254–259
|
125 |
Wade W N, Beuchat L R (2003). Metabiosis of proteolytic moulds and Salmonella in raw, ripe tomatoes. J Appl Microbiol, 95(3): 437–450
|
126 |
Wade W N, Vasdinnyei R, Deak T, Beuchat L R (2003). Proteolytic yeasts isolated from raw, ripe tomatoes and metabiotic association of Geotrichum candidum with Salmonella. Int J Food Microbiol, 86(1–2): 101–111
|
127 |
Weber H, Polen T, Heuveling J, Wendisch V F, Hengge R (2005). Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and σ factor selectivity. J Bacteriol, 187(5): 1591–1603
|
128 |
Wilmes-Riesenberg M R, Foster J W, Curtiss R 3rd (1997). An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. Infect Immun, 65(1): 203–210
|
129 |
Withey J H, DiRita V J (2005). Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation. Mol Microbiol, 56(4): 1062–1077
|
130 |
Withey J H, DiRita V J (2006). The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT. Mol Microbiol, 59(6): 1779–1789
|
131 |
Xie Y, Chou L S, Cutler A, Weimer B (2004). DNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol, 70(11): 6738–6747
|
132 |
Zhu J, Mekalanos J J (2003). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell, 5(4): 647–656
|
133 |
Zo Y G, Chokesajjawatee N, Grim C, Arakawa E, Watanabe H, Colwell R R (2009). Diversity and seasonality of bioluminescent Vibrio cholerae populations in Chesapeake Bay. Appl Environ Microbiol, 75(1): 135–146
|
134 |
Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare J M, Huang H, Groisman E A (2005). Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA, 102(8): 2862–2867
|
/
〈 | 〉 |