Received date: 24 Aug 2012
Accepted date: 27 Sep 2012
Published date: 01 Dec 2012
Copyright
DNA methylation is a key epigenetic mark when occurring in the promoter and enhancer regions regulates the accessibility of the binding protein and gene transcription. DNA methylation is inheritable and can be de novo-synthesized, erased and reinstated, making it arguably one of the most dynamic upstream regulators for gene expression and the most influential pacer for development. Recent progress has demonstrated that two forms of cytosine methylation and two pathways for demethylation constitute ample complexity for an instructional program for orchestrated gene expression and development. The forum of the current discussion and review are whether there is such a program, if so what the DNA methylation program entails, and what environment can change the DNA methylation program. The translational implication of the DNA methylation program is also proposed.
Feng C. ZHOU . DNA methylation program during development[J]. Frontiers in Biology, 2012 , 7(6) : 485 -494 . DOI: 10.1007/s11515-012-9246-1
1 |
Anway M D, Leathers C, Skinner M K (2006). Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology, 147(12): 5515–5523
|
2 |
Bakulski K M, Rozek L S, Dolinoy D C, Paulson H L, Hu H (2012). Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res, 9(5): 563–573
|
3 |
Bhutani N, Burns D M, Blau H M (2011). DNA demethylation dynamics. Cell, 146(6): 866–872
|
4 |
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21
|
5 |
Bird A P (1986). CpG-rich islands and the function of DNA methylation. Nature, 321(6067): 209–213
|
6 |
Brandeis M, Ariel M, Cedar H (1993). Dynamics of DNA methylation during development. Bioessays, 15(11): 709–713
|
7 |
Brown D C, Grace E, Sumner A T, Edmunds A T, Ellis P M (1995). ICF syndrome (immunodeficiency, centromeric instability and facial anomalies): investigation of heterochromatin abnormalities and review of clinical outcome. Hum Genet, 96(4): 411–416
|
8 |
Brown K D, Robertson K D (2007). DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet, 39(3): 289–290
|
9 |
Busslinger M, Hurst J, Flavell R A (1983). DNA methylation and the regulation of globin gene expression. Cell, 34(1): 197–206
|
10 |
Caldji C, Hellstrom I C, Zhang T Y, Diorio J, Meaney M J (2011). Environmental regulation of the neural epigenome. FEBS Lett, 2049–2058
|
11 |
Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky P M, Meaney M J (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA, 95(9): 5335–5340
|
12 |
Callaghan B, Feldman D, Gruis K, Feldman E (2011). The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener Dis, 8(1-2): 1–8
|
13 |
Champagne F A, Curley J P (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev, 33(4): 593–600
|
14 |
Chia N, Wang L, Lu X, Senut M C, Brenner C, Ruden D M (2011). Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics, 6(7): 853–856
|
15 |
Dawlaty M M, Ganz K, Powell B E, Hu Y C, Markoulaki S, Cheng A W, Gao Q, Kim J, Choi S W, Page D C, Jaenisch R (2011). Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell, 9(2): 166–175
|
16 |
De Carvalho D D, You J S, Jones P A (2010). DNA methylation and cellular reprogramming. Trends Cell Biol, 20(10): 609–617
|
17 |
Deaton A M, Bird A (2011). CpG islands and the regulation of transcription. Genes Dev, 25(10): 1010–1022
|
18 |
del Mazo J, Prantera G, Torres M, Ferraro M (1994). DNA methylation changes during mouse spermatogenesis. Chromosome Res, 2(2): 147–152
|
19 |
Dolinoy D C (2008). The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev, 66(Suppl 1): S7–S11
|
20 |
Dolinoy D C, Huang D, Jirtle R L (2007). Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA, 104(32): 13056–13061
|
21 |
Dolinoy D C, Weidman J R, Waterland R A, Jirtle R L (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect, 114(4): 567–572
|
22 |
Duhl D M, Vrieling H, Miller K A, Wolff G L, Barsh G S (1994). Neomorphic agouti mutations in obese yellow mice. Nat Genet, 8(1): 59–65
|
23 |
Gardiner-Garden M, Frommer M (1987). CpG islands in vertebrate genomes. J Mol Biol, 196(2): 261–282
|
24 |
Gisselsson D, Shao C, Tuck-Muller C M, Sogorovic S, Pålsson E, Smeets D, Ehrlich M (2005). Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma, 114(2): 118–126
|
25 |
Goll M G, Bestor T H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74(1): 481–514
|
26 |
Govorko D, Bekdash R A, Zhang C, Sarkar D K (2012). Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol Psychiatry, 72(5): 378–388
|
27 |
Green M L, Singh A V, Zhang Y, Nemeth K A, Sulik K K, Knudsen T B (2007). Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn, 236(2): 613–631
|
28 |
Guo J U, Su Y, Zhong C, Ming G L, Song H (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3): 423–434
|
29 |
Heijmans B T, Tobi E W, Stein A D, Putter H, Blauw G J, Susser E S, Slagboom P E, Lumey L H (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA, 105(44): 17046–17049
|
30 |
Hermann A, Gowher H, Jeltsch A (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci, 61(19-20): 2571–2587
|
31 |
Inoue A, Shen L, Dai Q, He C, Zhang Y (2011). Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res, 21(12): 1670–1676
|
32 |
Inoue A, Zhang Y (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 334(6053): 194
|
33 |
Iqbal K, Jin S G, Pfeifer G P, Szabó P E (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA, 108(9): 3642–3647
|
34 |
Ito S, D'Alessio A C, Taranova O V, Hong K, Sowers L C, Zhang Y (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466:1129–1136
|
35 |
Ito S, Shen L, Dai Q, Wu S C, Collins L B, Swenberg J A, He C, Zhang Y (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047): 1300–1303
|
36 |
Jeffy B D, Chirnomas R B, Romagnolo D F (2002). Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ Mol Mutagen, 39(2-3): 235–244
|
37 |
Jones P A, Takai D (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532): 1068–1070
|
38 |
Kaati G, Bygren L O, Edvinsson S (2002). Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet, 10(11): 682–688
|
39 |
Kafri T, Gao X, Razin A (1993). Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci USA, 90(22): 10558–10562
|
40 |
Kahn H S, Graff M, Stein A D, Lumey L H (2009). A fingerprint marker from early gestation associated with diabetes in middle age: the Dutch Hunger Winter Families Study. Int J Epidemiol, 38(1): 101–109
|
41 |
Kaminen-Ahola N, Ahola A, Maga M, Mallitt K A, Fahey P, Cox T C, Whitelaw E, Chong S (2010). Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet, 6(1): e1000811
|
42 |
Karymov M A, Tomschik M, Leuba S H, Caiafa P, Zlatanova J (2001). DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. FASEB J, 15(14): 2631–2641
|
43 |
Kile M L, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Hsueh Y M, Wright R O, Christiani D C (2012). Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect, 120(7): 1061–1066
|
44 |
Koh K P, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer C A, Mostoslavsky G, Lahesmaa R, Orkin S H, Rodig S J, Daley G Q, Rao A (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2): 200–213
|
45 |
Kriaucionis S, Heintz N (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929): 929–930
|
46 |
Kucharski R, Maleszka J, Foret S, Maleszka R (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871): 1827–1830
|
47 |
Kundakovic M, Champagne F A (2011). Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun, 25(6): 1084–1093
|
48 |
Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322
|
49 |
Liu Y, Balaraman Y, Wang G, Nephew K P, Zhou F C (2009). Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics, 4(7): 500–511
|
50 |
Lumey L H, Stein A D (2009). Transgenerational effects of prenatal exposure to the Dutch famine. BJOG, 116(6): 868, author reply 868
|
51 |
Lumey L H, Stein A D, Kahn H S, van der Pal-de Bruin K M, Blauw G J, Zybert P A, Susser E S (2007). Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol, 36(6): 1196–1204
|
52 |
Martínez L, Jiménez V, García-Sepúlveda C, Ceballos F, Delgado J M, Niño-Moreno P, Doniz L, Saavedra-Alanís V, Castillo C G, Santoyo M E, González-Amaro R, Jiménez-Capdeville M E (2011). Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int, 58(5): 574–581
|
53 |
Mason J B, Choi S W (2005). Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol, 35(3): 235–241
|
54 |
McKay J A, Williams E A, Mathers J C (2004). Folate and DNA methylation during in utero development and aging. Biochem Soc Trans, 32(Pt 6): 1006–1007
|
55 |
Meaney M J, Szyf M (2005). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci, 7(2): 103–123
|
56 |
Morgan H D, Santos F, Green K, Dean W, Reik W (2005). Epigenetic reprogramming in mammals. Hum Mol Genet, 14(Spec No 1): R47–R58
|
57 |
Nakanishi M O, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S (2012). Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics, 7(2): 173–182
|
58 |
Okano M, Li E (2002). Genetic analyses of DNA methyltransferase genes in mouse model system. J Nutr, 132(8 Suppl): 2462S–2465S
|
59 |
Otero N K, Thomas J D, Saski C A, Xia X, Kelly S J (2012). Choline supplementation and DNA methylation in the hippocampus and prefrontal cortex of rats exposed to alcohol during development. Alcohol Clin Exp Res,
|
60 |
Ouko L A, Shantikumar K, Knezovich J, Haycock P, Schnugh D J, Ramsay M (2009). Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes-implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res, 33(9):1615–1627
|
61 |
Perera F, Herbstman J (2011). Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol, 31(3): 363–373
|
62 |
Pilsner J R, Hu H, Ettinger A, Sánchez B N, Wright R O, Cantonwine D, Lazarus A, Lamadrid-Figueroa H, Mercado-García A, Téllez-Rojo M M, Hernández-Avila M (2009). Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect, 117(9): 1466–1471
|
63 |
Ramsahoye B H, Davies C S, Mills K I (1996). DNA methylation: biology and significance. Blood Rev, 10(4): 249–261
|
64 |
Schermelleh L, Haemmer A, Spada F, Rösing N, Meilinger D, Rothbauer U, Cardoso M C, Leonhardt H (2007). Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res, 35(13): 4301–4312
|
65 |
Schmid M, Haaf T, Grunert D (1984). 5-Azacytidine-induced undercondensations in human chromosomes. Hum Genet, 67(3): 257–263
|
66 |
Singh R P, Shiue K, Schomberg D, Zhou F C (2009). Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant, 18(10): 1197–1211
|
67 |
Stein A D, Zybert P A, van de Bor M, Lumey L H (2004). Intrauterine famine exposure and body proportions at birth: the Dutch Hunger Winter. Int J Epidemiol, 33(4): 831–836
|
68 |
Stein A D, Zybert P A, van der Pal-de Bruin K, Lumey L H (2006). Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch Famine. Eur J Epidemiol, 21(10): 759–765
|
69 |
Suter M, Ma J, Harris A, Patterson L, Brown K A, Shope C, Showalter L, Abramovici A, Aagaard-Tillery K M (2011). Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics, 6(11): 1284–1294
|
70 |
Szulwach K E, Li X, Li Y, Song C X, Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14:1607–1616
|
71 |
Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer L M, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935
|
72 |
Tang W Y, Levin L, Talaska G, Cheung Y Y, Herbstman J, Tang D, Miller R L, Perera F, Ho S M (2012). Maternal Exposure to Polycyclic Aromatic Hydrocarbons and 5′-CpG Methylation of Interferon-γ in Cord White Blood Cells. Environ Health Perspect, 120(8): 1195–1200
|
73 |
Tawa R, Ono T, Kurishita A, Okada S, Hirose S (1990). Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation, 45(1): 44–48
|
74 |
Waterland R A, Jirtle R L (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol, 23(15): 5293–5300
|
75 |
Wolffe A P, Jones P L, Wade P A (1999). DNA demethylation. Proc Natl Acad Sci USA, 96(11): 5894–5896
|
76 |
Wright R J (2011). Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin North Am, 31(1): 19–39
|
77 |
Wu H, D’Alessio A C, Ito S, Wang Z, Cui K, Zhao K, Sun Y E, Zhang Y (2011). Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev, 25(7): 679–684
|
78 |
Wu Q, Ohsako S, Ishimura R, Suzuki J S, Tohyama C (2004). Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod, 70(6): 1790–1797
|
79 |
Wu S C, Zhang Y (2010). Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 11(9): 607–620
|
80 |
Xu X F, Cheng F, Du L Z (2011). Epigenetic regulation of pulmonary arterial hypertension. Hypertens Res, 34(9): 981–986
|
81 |
Yildirim O, Li R, Hung J H, Chen P B, Dong X, Ee L S, Weng Z, Rando O J, Fazzio T G (2011). Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell, 147(7): 1498–1510
|
82 |
Yisraeli J, Frank D, Razin A, Cedar H (1988). Effect of in vitro DNA methylation on beta-globin gene expression. Proc Natl Acad Sci USA, 85(13): 4638–4642
|
83 |
Zeisel S H (2007). Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life, 59(6): 380–387
|
84 |
Zhou F C, Balaraman Y, Teng M, Liu Y, Singh R P, Nephew K P (2011a). Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol Clin Exp Res, 35(4): 735–746
|
85 |
Zhou F C, Chen Y, Love A (2011b). Cellular DNA methylation program during neurulation and its alteration by alcohol exposure. Birth Defects Res A Clin Mol Teratol, 91(8): 703–715
|
86 |
Zhou F C, Zhao Q, Liu Y, Goodlett C R, Liang T, McClintick J N, Edenberg H J, Li L (2011c). Alteration of gene expression by alcohol exposure at early neurulation. BMC Genomics, 12(1): 124
|
/
〈 | 〉 |