REVIEW

DNA methylation program during development

  • Feng C. ZHOU
Expand
  • Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School Medicine, Indianapolis, IN 46202, USA

Received date: 24 Aug 2012

Accepted date: 27 Sep 2012

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

DNA methylation is a key epigenetic mark when occurring in the promoter and enhancer regions regulates the accessibility of the binding protein and gene transcription. DNA methylation is inheritable and can be de novo-synthesized, erased and reinstated, making it arguably one of the most dynamic upstream regulators for gene expression and the most influential pacer for development. Recent progress has demonstrated that two forms of cytosine methylation and two pathways for demethylation constitute ample complexity for an instructional program for orchestrated gene expression and development. The forum of the current discussion and review are whether there is such a program, if so what the DNA methylation program entails, and what environment can change the DNA methylation program. The translational implication of the DNA methylation program is also proposed.

Cite this article

Feng C. ZHOU . DNA methylation program during development[J]. Frontiers in Biology, 2012 , 7(6) : 485 -494 . DOI: 10.1007/s11515-012-9246-1

Acknowledgments

This article is dedicated to my mother who have profoundly influenced me for who I am. The review and the studies on epigenetic program in FCZ’s laboratory are supported by AA016698 and P50 AA07611 to FCZ. The author thanks Yuanyuan Chen for her assistance in preparation of figures and Alison Batka for the manuscript.
1
Anway M D, Leathers C, Skinner M K (2006). Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology, 147(12): 5515–5523

DOI PMID

2
Bakulski K M, Rozek L S, Dolinoy D C, Paulson H L, Hu H (2012). Alzheimer’s disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res, 9(5): 563–573

PMID

3
Bhutani N, Burns D M, Blau H M (2011). DNA demethylation dynamics. Cell, 146(6): 866–872

DOI PMID

4
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21

DOI PMID

5
Bird A P (1986). CpG-rich islands and the function of DNA methylation. Nature, 321(6067): 209–213

DOI PMID

6
Brandeis M, Ariel M, Cedar H (1993). Dynamics of DNA methylation during development. Bioessays, 15(11): 709–713

DOI PMID

7
Brown D C, Grace E, Sumner A T, Edmunds A T, Ellis P M (1995). ICF syndrome (immunodeficiency, centromeric instability and facial anomalies): investigation of heterochromatin abnormalities and review of clinical outcome. Hum Genet, 96(4): 411–416

DOI PMID

8
Brown K D, Robertson K D (2007). DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat Genet, 39(3): 289–290

DOI PMID

9
Busslinger M, Hurst J, Flavell R A (1983). DNA methylation and the regulation of globin gene expression. Cell, 34(1): 197–206

DOI PMID

10
Caldji C, Hellstrom I C, Zhang T Y, Diorio J, Meaney M J (2011). Environmental regulation of the neural epigenome. FEBS Lett, 2049–2058

11
Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky P M, Meaney M J (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA, 95(9): 5335–5340

DOI PMID

12
Callaghan B, Feldman D, Gruis K, Feldman E (2011). The association of exposure to lead, mercury, and selenium and the development of amyotrophic lateral sclerosis and the epigenetic implications. Neurodegener Dis, 8(1-2): 1–8

DOI PMID

13
Champagne F A, Curley J P (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neurosci Biobehav Rev, 33(4): 593–600

DOI PMID

14
Chia N, Wang L, Lu X, Senut M C, Brenner C, Ruden D M (2011). Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics, 6(7): 853–856

DOI PMID

15
Dawlaty M M, Ganz K, Powell B E, Hu Y C, Markoulaki S, Cheng A W, Gao Q, Kim J, Choi S W, Page D C, Jaenisch R (2011). Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell, 9(2): 166–175

DOI PMID

16
De Carvalho D D, You J S, Jones P A (2010). DNA methylation and cellular reprogramming. Trends Cell Biol, 20(10): 609–617

DOI PMID

17
Deaton A M, Bird A (2011). CpG islands and the regulation of transcription. Genes Dev, 25(10): 1010–1022

DOI PMID

18
del Mazo J, Prantera G, Torres M, Ferraro M (1994). DNA methylation changes during mouse spermatogenesis. Chromosome Res, 2(2): 147–152

DOI PMID

19
Dolinoy D C (2008). The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev, 66(Suppl 1): S7–S11

DOI PMID

20
Dolinoy D C, Huang D, Jirtle R L (2007). Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA, 104(32): 13056–13061

DOI PMID

21
Dolinoy D C, Weidman J R, Waterland R A, Jirtle R L (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect, 114(4): 567–572

DOI PMID

22
Duhl D M, Vrieling H, Miller K A, Wolff G L, Barsh G S (1994). Neomorphic agouti mutations in obese yellow mice. Nat Genet, 8(1): 59–65

DOI PMID

23
Gardiner-Garden M, Frommer M (1987). CpG islands in vertebrate genomes. J Mol Biol, 196(2): 261–282

DOI PMID

24
Gisselsson D, Shao C, Tuck-Muller C M, Sogorovic S, Pålsson E, Smeets D, Ehrlich M (2005). Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma, 114(2): 118–126

DOI PMID

25
Goll M G, Bestor T H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74(1): 481–514

DOI PMID

26
Govorko D, Bekdash R A, Zhang C, Sarkar D K (2012). Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol Psychiatry, 72(5): 378–388

27
Green M L, Singh A V, Zhang Y, Nemeth K A, Sulik K K, Knudsen T B (2007). Reprogramming of genetic networks during initiation of the Fetal Alcohol Syndrome. Dev Dyn, 236(2): 613–631

DOI PMID

28
Guo J U, Su Y, Zhong C, Ming G L, Song H (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3): 423–434

DOI PMID

29
Heijmans B T, Tobi E W, Stein A D, Putter H, Blauw G J, Susser E S, Slagboom P E, Lumey L H (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA, 105(44): 17046–17049

DOI PMID

30
Hermann A, Gowher H, Jeltsch A (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci, 61(19-20): 2571–2587

DOI PMID

31
Inoue A, Shen L, Dai Q, He C, Zhang Y (2011). Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res, 21(12): 1670–1676

DOI PMID

32
Inoue A, Zhang Y (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 334(6053): 194

DOI PMID

33
Iqbal K, Jin S G, Pfeifer G P, Szabó P E (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA, 108(9): 3642–3647

DOI PMID

34
Ito S, D'Alessio A C, Taranova O V, Hong K, Sowers L C, Zhang Y (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466:1129–1136

35
Ito S, Shen L, Dai Q, Wu S C, Collins L B, Swenberg J A, He C, Zhang Y (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333(6047): 1300–1303

36
Jeffy B D, Chirnomas R B, Romagnolo D F (2002). Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ Mol Mutagen, 39(2-3): 235–244

DOI PMID

37
Jones P A, Takai D (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532): 1068–1070

DOI PMID

38
Kaati G, Bygren L O, Edvinsson S (2002). Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet, 10(11): 682–688

DOI PMID

39
Kafri T, Gao X, Razin A (1993). Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci USA, 90(22): 10558–10562

DOI PMID

40
Kahn H S, Graff M, Stein A D, Lumey L H (2009). A fingerprint marker from early gestation associated with diabetes in middle age: the Dutch Hunger Winter Families Study. Int J Epidemiol, 38(1): 101–109

DOI PMID

41
Kaminen-Ahola N, Ahola A, Maga M, Mallitt K A, Fahey P, Cox T C, Whitelaw E, Chong S (2010). Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet, 6(1): e1000811

DOI PMID

42
Karymov M A, Tomschik M, Leuba S H, Caiafa P, Zlatanova J (2001). DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone. FASEB J, 15(14): 2631–2641

DOI PMID

43
Kile M L, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Hsueh Y M, Wright R O, Christiani D C (2012). Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect, 120(7): 1061–1066

DOI PMID

44
Koh K P, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer C A, Mostoslavsky G, Lahesmaa R, Orkin S H, Rodig S J, Daley G Q, Rao A (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell, 8(2): 200–213

DOI PMID

45
Kriaucionis S, Heintz N (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929): 929–930

DOI PMID

46
Kucharski R, Maleszka J, Foret S, Maleszka R (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319(5871): 1827–1830

DOI PMID

47
Kundakovic M, Champagne F A (2011). Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun, 25(6): 1084–1093

DOI PMID

48
Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315–322

DOI PMID

49
Liu Y, Balaraman Y, Wang G, Nephew K P, Zhou F C (2009). Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics, 4(7): 500–511

DOI PMID

50
Lumey L H, Stein A D (2009). Transgenerational effects of prenatal exposure to the Dutch famine. BJOG, 116(6): 868, author reply 868

DOI PMID

51
Lumey L H, Stein A D, Kahn H S, van der Pal-de Bruin K M, Blauw G J, Zybert P A, Susser E S (2007). Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol, 36(6): 1196–1204

DOI PMID

52
Martínez L, Jiménez V, García-Sepúlveda C, Ceballos F, Delgado J M, Niño-Moreno P, Doniz L, Saavedra-Alanís V, Castillo C G, Santoyo M E, González-Amaro R, Jiménez-Capdeville M E (2011). Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int, 58(5): 574–581

DOI PMID

53
Mason J B, Choi S W (2005). Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol, 35(3): 235–241

DOI PMID

54
McKay J A, Williams E A, Mathers J C (2004). Folate and DNA methylation during in utero development and aging. Biochem Soc Trans, 32(Pt 6): 1006–1007

DOI PMID

55
Meaney M J, Szyf M (2005). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci, 7(2): 103–123

PMID

56
Morgan H D, Santos F, Green K, Dean W, Reik W (2005). Epigenetic reprogramming in mammals. Hum Mol Genet, 14(Spec No 1): R47–R58

DOI PMID

57
Nakanishi M O, Hayakawa K, Nakabayashi K, Hata K, Shiota K, Tanaka S (2012). Trophoblast-specific DNA methylation occurs after the segregation of the trophectoderm and inner cell mass in the mouse periimplantation embryo. Epigenetics, 7(2): 173–182

DOI PMID

58
Okano M, Li E (2002). Genetic analyses of DNA methyltransferase genes in mouse model system. J Nutr, 132(8 Suppl): 2462S–2465S

PMID

59
Otero N K, Thomas J D, Saski C A, Xia X, Kelly S J (2012). Choline supplementation and DNA methylation in the hippocampus and prefrontal cortex of rats exposed to alcohol during development. Alcohol Clin Exp Res,

DOI

60
Ouko L A, Shantikumar K, Knezovich J, Haycock P, Schnugh D J, Ramsay M (2009). Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes-implications for fetal alcohol spectrum disorders. Alcohol Clin Exp Res, 33(9):1615–1627

61
Perera F, Herbstman J (2011). Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol, 31(3): 363–373

DOI PMID

62
Pilsner J R, Hu H, Ettinger A, Sánchez B N, Wright R O, Cantonwine D, Lazarus A, Lamadrid-Figueroa H, Mercado-García A, Téllez-Rojo M M, Hernández-Avila M (2009). Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect, 117(9): 1466–1471

PMID

63
Ramsahoye B H, Davies C S, Mills K I (1996). DNA methylation: biology and significance. Blood Rev, 10(4): 249–261

DOI PMID

64
Schermelleh L, Haemmer A, Spada F, Rösing N, Meilinger D, Rothbauer U, Cardoso M C, Leonhardt H (2007). Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res, 35(13): 4301–4312

DOI PMID

65
Schmid M, Haaf T, Grunert D (1984). 5-Azacytidine-induced undercondensations in human chromosomes. Hum Genet, 67(3): 257–263

DOI PMID

66
Singh R P, Shiue K, Schomberg D, Zhou F C (2009). Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant, 18(10): 1197–1211

67
Stein A D, Zybert P A, van de Bor M, Lumey L H (2004). Intrauterine famine exposure and body proportions at birth: the Dutch Hunger Winter. Int J Epidemiol, 33(4): 831–836

DOI PMID

68
Stein A D, Zybert P A, van der Pal-de Bruin K, Lumey L H (2006). Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch Famine. Eur J Epidemiol, 21(10): 759–765

DOI PMID

69
Suter M, Ma J, Harris A, Patterson L, Brown K A, Shope C, Showalter L, Abramovici A, Aagaard-Tillery K M (2011). Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics, 6(11): 1284–1294

DOI PMID

70
Szulwach K E, Li X, Li Y, Song C X, Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14:1607–1616

71
Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer L M, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324(5929): 930–935

DOI PMID

72
Tang W Y, Levin L, Talaska G, Cheung Y Y, Herbstman J, Tang D, Miller R L, Perera F, Ho S M (2012). Maternal Exposure to Polycyclic Aromatic Hydrocarbons and 5′-CpG Methylation of Interferon-γ in Cord White Blood Cells. Environ Health Perspect, 120(8): 1195–1200

DOI PMID

73
Tawa R, Ono T, Kurishita A, Okada S, Hirose S (1990). Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation, 45(1): 44–48

DOI PMID

74
Waterland R A, Jirtle R L (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol, 23(15): 5293–5300

DOI PMID

75
Wolffe A P, Jones P L, Wade P A (1999). DNA demethylation. Proc Natl Acad Sci USA, 96(11): 5894–5896

DOI PMID

76
Wright R J (2011). Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin North Am, 31(1): 19–39

DOI PMID

77
Wu H, D’Alessio A C, Ito S, Wang Z, Cui K, Zhao K, Sun Y E, Zhang Y (2011). Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev, 25(7): 679–684

DOI PMID

78
Wu Q, Ohsako S, Ishimura R, Suzuki J S, Tohyama C (2004). Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod, 70(6): 1790–1797

DOI PMID

79
Wu S C, Zhang Y (2010). Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 11(9): 607–620

DOI PMID

80
Xu X F, Cheng F, Du L Z (2011). Epigenetic regulation of pulmonary arterial hypertension. Hypertens Res, 34(9): 981–986

DOI PMID

81
Yildirim O, Li R, Hung J H, Chen P B, Dong X, Ee L S, Weng Z, Rando O J, Fazzio T G (2011). Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell, 147(7): 1498–1510

DOI PMID

82
Yisraeli J, Frank D, Razin A, Cedar H (1988). Effect of in vitro DNA methylation on beta-globin gene expression. Proc Natl Acad Sci USA, 85(13): 4638–4642

DOI PMID

83
Zeisel S H (2007). Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life, 59(6): 380–387

DOI PMID

84
Zhou F C, Balaraman Y, Teng M, Liu Y, Singh R P, Nephew K P (2011a). Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol Clin Exp Res, 35(4): 735–746

DOI PMID

85
Zhou F C, Chen Y, Love A (2011b). Cellular DNA methylation program during neurulation and its alteration by alcohol exposure. Birth Defects Res A Clin Mol Teratol, 91(8): 703–715

DOI PMID

86
Zhou F C, Zhao Q, Liu Y, Goodlett C R, Liang T, McClintick J N, Edenberg H J, Li L (2011c). Alteration of gene expression by alcohol exposure at early neurulation. BMC Genomics, 12(1): 124

DOI PMID

Outlines

/