RESEARCH ARTICLE

Mutation in angiotensin II type 1 receptor disrupts its binding to angiotensin II leading to hypotension: An insight into hydrogen bonding patterns

  • Arpita KUNDU ,
  • Sudha RAMAIAH ,
  • Anand ANBARASU
Expand
  • Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore–632014, Tamil Nadu, India

Received date: 16 Jul 2012

Accepted date: 18 Jul 2012

Published date: 01 Oct 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

To understand the role of angiotensin II type 1 receptor gene (AGTR1) gene products in relation to hypotension we have analyzed the single nucleotide polymorphisms (SNPs) associated with this gene. This can help us to understand the genetic variations that can alter the function of the gene products. In this present study, we report the polymorphic variant associated with AGTR1 and its weak interaction with angiotensin II (AngII) which leads to hypotension. Out of 1318 SNPs, six are found to be non-synonymous, of which rs1064533 shows significant damaging effect. A missense mutation (T1255G), i.e., from thymine to guanine for rs1064533 in AGTR1 gene results in amino acid substitution from cysteine (Cys) to tryptophan (Trp) in the receptor protein. A strong hydrogen bond exists between Cys289 of native AGTR1 protein and glutamine 167 of AngII. Interestingly, it is replaced by a weak hydrogen bond in the mutant protein between Trp289 (mutant residue) and serine 340. Such a substitution from small, hydrophilic to bulky, hydrophobic residue in AGTR1 protein results in reduced binding affinity of the receptor protein with AngII, leading to hypotension. The results presented from this in silico study will open up new prospect for genetic analysis of AGTR1 gene and will be beneficial to the researchers for understanding the role played by AGTR1 gene in hypotension disease.

Cite this article

Arpita KUNDU , Sudha RAMAIAH , Anand ANBARASU . Mutation in angiotensin II type 1 receptor disrupts its binding to angiotensin II leading to hypotension: An insight into hydrogen bonding patterns[J]. Frontiers in Biology, 2012 , 7(5) : 477 -484 . DOI: 10.1007/s11515-012-1241-z

Acknowledgement

Dr. Anand Anbarasu gratefully acknowledges the Indian council of Medical Research (ICMR), Government of India Agency for the research grant. We would like to thank the management of VIT for providing us the necessary funds and infrastructure for conducting this project.
1
Anbarasu A, Anand S, Mathew L, Rao S (2006). Computation of non-covalent interactions in TNF proteins and interleukins. Cytokine, 35(5-6): 263–269

DOI PMID

2
Anbarasu A, Anand S, Mathew L, Sethumadhavan R (2007). Influence of cation-π interactions on RNA-binding proteins. Int J Biol Macromol, 40(5): 479–483

DOI PMID

3
Anbarasu A, Sethumadhavan R (2007). Exploring the role of cation-π interactions in glycoproteins lipid-binding proteins and RNA-binding proteins. J Theor Biol, 247(2): 346–353

DOI PMID

4
Ausiello G, Cesareni G, Helmer-Citterich M (1997). ESCHER: a new docking procedure applied to the reconstruction of protein tertiary structure. Proteins, 28(4): 556–567

DOI PMID

5
Benner S A, Cannarozzi G, Gerloff D, Turcotte M, Chelvanayagam G (1997). Bona fide predictions of protein secondary structure using transparent analyses of multiple sequence alignments. Chem Rev, 97(8): 2725–2844

DOI PMID

6
Berry C, Touyz R, Dominiczak A F, Webb R C, Johns D G (2001). Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol, 281(6): H2337–H2365

PMID

7
Cartegni L, Wang J, Zhu Z, Zhang M Q, Krainer A R (2003). ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res, 31(13): 3568–3571

DOI PMID

8
Eswar N, Webb B, Marti-Renom M A, Madhusudhan M S, Eramian D, Shen M Y, Pieper U, Sali A (2007). Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci, Chapter 2(9): 2, 9

PMID

9
Fairbrother W G, Yeh R F, Sharp P A, Burge C B (2002). Predictive identification of exonic splicing enhancers in human genes. Science, 297(5583): 1007–1013

DOI PMID

10
Fairbrother W G, Yeo G W, Yeh R, Goldstein P, Mawson M, Sharp P A, Burge C B (2004). RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res, 32(Web ServerWeb Server issue): W187-90

DOI PMID

11
Fernandez-Recio J, Totrov M, Abagyan R (2002). Soft protein-protein docking in internal coordinates. Protein Sci, 11(2): 280–291

DOI PMID

12
Fiser A, Sali A (2003). Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol, 374: 461–491

DOI PMID

13
Gallivan J P, Dougherty D A (1999). Cation-π interactions in structural biology. Proc Natl Acad Sci USA, 96(17): 9459–9464

DOI PMID

14
Gavin A C, Superti-Furga G (2003). Protein complexes and proteome organization from yeast to man. Curr Opin Chem Biol, 7(1): 21–27

DOI PMID

15
Gerken T A, Tep C, Rarick J (2004). Role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 5′-diphosphate-alpha-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats. Biochemistry, 43(30): 9888–9900

DOI PMID

16
Griendling K K, Alexander R W (1993). The angiotensin (AT1) receptor. Semin Nephrol, 13(6): 558–566

PMID

17
Hansen J L, Haunsø S, Brann M R, Sheikh S P, Weiner D M (2004). Loss-of-function polymorphic variants of the human angiotensin II type 1 receptor. Mol Pharmacol, 65(3): 770–777

DOI PMID

18
Hekkelman M L, Te Beek T A H, Pettifer S R, Thorne D, Attwood T K, Vriend G (2010). WIWS: a protein structure bioinformatics Web service collection. Nucleic Acids Res, 38(Web Server Web Server issue): W719-23

DOI PMID

19
Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank G D, Eguchi S (2007). Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond), 112(8): 417–428

DOI PMID

20
Hogg P J (2003). Disulfide bonds as switches for protein function. Trends Biochem Sci, 28(4): 210–214

DOI PMID

21
Hubbard T J P, Aken B L, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez X M, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P (2009). Ensembl 2009. Nucleic Acids Res, 37(Database Database issue): D690–D697

DOI PMID

22
Jeffrey G A, Saenger W (1991) Hydrogen Bonding in Biological Structure. Springer-Verlag, Berlin, Heidelberg, 459–486

23
Johnson M M, Houck J, Chen C (2005). Screening for deleterious non synonymous single-nucleotide polymorphisms in genes involved in steroid hormone metabolism and response. Cancer Epidemiol Biomarkers Prev, 4(5): 1326–1329

DOI

24
Karchin R, Diekhans M, Kelly L, Thomas D J, Pieper U, Eswar N, Haussler D, Sali A (2005). LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics, 21(12): 2814–2820

DOI PMID

25
Khan S, Vihinen M (2007). Spectrum of disease-causing mutations in protein secondary structures. BMC Struct Biol, 7(1): 56

DOI PMID

26
Kuhn R M, Karolchik D, Zweig A S, Trumbower H, Thomas D J, Thakkapallayil A, Sugnet C W, Stanke M, Smith K E, Siepel A K, Rosenbloom K R, Rhead B, Raney B J, Pohl A, Pedersen J S, Hsu F, Hinrichs A S, Harte R A, Diekhans M, Clawson H, Bejerano G, Barber G P, Baertsch R, Haussler D, Kent W J (2007). The UCSC genome browser database: update 2007. Nucleic Acids Res, 35(Database Database issue): D668–D673

DOI PMID

27
Lanver D, Mendoza-Mendoza A, Brachmann A, Kahmann R (2010). Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. Plant Cell, 22(6): 2085–2101

DOI PMID

28
Leclerc P C, Lanctot P M, Auger-Messier M, Escher E, Leduc R, Guillemette G (2006). S-nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II. Br J Pharmacol, 148(3): 306–313

DOI PMID

29
Lee P H, Shatkay H (2008). F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res, 36(Database Database issue): D820–D824

DOI PMID

30
Lee P H, Shatkay H (2009). An integrative scoring system for ranking SNPs by their potential deleterious effects. Bioinformatics, 25(8): 1048–1055

DOI PMID

31
Maekawa M, Kikuchi J, Kotani K, Nagao K, Odgerel T, Ueda K, Kawano M, Furukawa Y, Sakurabayashi I (2009). A novel missense mutation of ABCA1 in transmembrane alpha-helix in a Japanese patient with Tangier disease. Atherosclerosis, 206(1): 216–222

DOI PMID

32
Mah J T L, Low E S H, Lee E (2011). In silico SNP analysis and bioinformatics tools: a review of the state of the art to aid drug discovery. Drug Discov Today, 16(17-18): 800–809

DOI PMID

33
Meyer M, Wilson P, Schomburg D (1996). Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. J Mol Biol, 264(1): 199–210

DOI PMID

34
Ng P C, Henikoff S (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814

DOI PMID

35
Perodin J, Deraët M, Auger-Messier M, Boucard A A, Rihakova L, Beaulieu M E, Lavigne P, Parent J L, Guillemette G, Leduc R, Escher E (2002). Residues 293 and 294 are ligand contact points of the human angiotensin type 1 receptor. Biochemistry, 41(48): 14348–14356

DOI PMID

36
Ramensky V, Bork P, Sunyaev S (2002). Human non-synonymous SNPs: server and survey. Nucleic Acids Res, 30(17): 3894–3900

DOI PMID

37
Reumers J, Maurer-Stroh S, Schymkowitz J, Rousseau F (2006). SNPeffect v2.0: a new step in investigating the molecular phenotypic effects of human non-synonymous SNPs. Bioinformatics, 22(17): 2183–2185

DOI PMID

38
Reumers J, Schymkowitz J, Ferkinghoff-Borg J, Stricher F, Serrano L, Rousseau F (2005). SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Res, 33(Database issue): D527–D532

DOI PMID

39
Reynolds C A, Hong M G, Eriksson U K, Blennow K, Bennet A M, Johansson B, Malmberg B, Berg S, Wiklund F, Gatz M, Pedersen N L, Prince J A (2009). A survey of ABCA1 sequence variation confirms association with dementia. Hum Mutat, 30(9): 1348–1354

DOI PMID

40
Rosskopf D, Schürks M, Rimmbach C, Schäfers R (2007). Genetics of arterial hypertension and hypotension. Naunyn Schmiedebergs Arch Pharmacol, 374(5-6): 429–469

DOI PMID

41
Rout C C, Rocke D A, Levin J, Gouws E, Reddy D (1993). A reevaluation of the role of crystalloid preload in the prevention of hypotension associated with spinal anesthesia for elective cesarean section. Anesthesiology, 79(2): 262–269

DOI PMID

42
Ryan M, Diekhans M, Lien S, Liu Y, Karchin R (2009). LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures. Bioinformatics, 25(11): 1431–1432

DOI PMID

43
Satija R, Hein J, Lunter G A (2010). Genome-wide functional element detection using pairwise statistical alignment outperforms multiple genome footprinting techniques. Bioinformatics, 26(17): 2116–2120

DOI PMID

44
Siepel A, Bejerano G, Pedersen J S, Hinrichs A S, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier L W, Richards S, Weinstock G M, Wilson R K, Gibbs R A, Kent W J, Miller W, Haussler D (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res, 15(8): 1034–1050

DOI PMID

45
Smith P J, Zhang C, Wang J, Chew S L, Zhang M Q, Krainer A R (2006). An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet, 15(16): 2490–2508

DOI PMID

46
Sugaya T, Nishimatsu S I, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaizumi K, Hisada Y, Otsuka A, Sugiura M, Fukuta K, Fukamizu A, Murakami K (1995). Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem, 270(32): 18719–18722

DOI PMID

47
Sugiyama F, Yagami K, Paigen B (2001). Mouse models of blood pressure regulation and hypertension. Curr Hypertens Rep, 3(1): 41–48

DOI PMID

48
Tobin M D, Tomaszewski M, Braund P S, Hajat C, Raleigh S M, Palmer T M, Caulfield M, Burton P R, Samani N J (2008). Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension, 51(6): 1658–1664

DOI PMID

49
Viklund H, Granseth E, Elofsson A (2006). Structural classification and prediction of reentrant regions in α-helical transmembrane proteins: application to complete genomes. J Mol Biol, 361(3): 591–603

DOI PMID

50
Wetzel R (1987). Harnessing disulfide-bonds using protein engineering. Trends Biochem Sci, 12: 478–482

DOI

51
Wheeler D L, Church D M, Lash A E, Leipe D D, Madden T L, Pontius J U, Schuler G D, Schriml L M, Tatusova T A, Wagner L, Rapp B A, Geer L Y, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman D J, Madden T L, Maglott D R, Miller V, Ostell J, Pruitt K D, Schuler G D, Shumway M, Sequeira E, Sherry S T, Sirotkin K, Souvorov A, Starchenko G, Tatusov R L, Tatusova T A, Wagner L, Yaschenko E (2002). Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res, 30(1): 13–16

DOI PMID

52
Xi H (2002). Linkage analysis on chromosome 2 in essential hypotension pedigrees. Chin Sci Bull, 47(18): 1538–1540

DOI

53
Xu D, Tsai C J, Nussinov R (1997). Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng, 10(9): 999–1012

DOI PMID

54
Yuan Z Q, Gottlieb B, Beitel L K, Wong N, Gordon P H, Wang Q, Puisieux A, Foulkes W D, Trifiro M (2002). Polymorphisms and HNPCC: PMS2-MLH1 protein interactions diminished by single nucleotide polymorphisms. Hum Mutat, 19(2): 108–113

DOI PMID

55
Yue P, Melamud E, Moult J (2006). SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics, 7(1): 166–181

DOI PMID

56
Zhang X H F, Kangsamaksin T, Chao M S P, Banerjee J K, Chasin L A (2005). Exon inclusion is dependent on predictable exonic splicing enhancers. Mol Cell Biol, 25(16): 7323–7332

DOI PMID

57
Zhu Y, Hoffman A, Wu X, Zhang H, Zhang Y, Leaderer D, Zheng T (2008). Correlating observed odds ratios from lung cancer case-control studies to SNP functional scores predicted by bioinformatic tools. Mutat Res, 639(1-2): 80–88

DOI PMID

Outlines

/