REVIEW

Cellular responses to unsaturated fatty acids mediated by their sensor Ubxd8

  • Jin YE
Expand
  • Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA

Received date: 17 Jul 2012

Accepted date: 17 Aug 2012

Published date: 01 Oct 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Fatty acids (FAs) are crucial nutrient for cell survival because they are required for synthesis of phospholipids in cellular membranes and for generation of energy. However, overaccumulation of FAs is toxic. In response to excessive FAs, cells are able to activate multiple reactions to prevent their overaccumulation. These reactions are mediated by Ubxd8, a cellular protein that specifically interacts with unsaturated but not saturated FAs. The selective interaction of Ubxd8 with unsaturated FAs may explain previous observations that only unsaturated but not saturated FAs are able to stimulate the regulatory reactions that prevent overaccumulation of FAs. Thus, understanding the mechanism through which Ubxd8 maintains cellular FA homeostasis may provide new insights into saturated FA-induced lipotoxicity.

Cite this article

Jin YE . Cellular responses to unsaturated fatty acids mediated by their sensor Ubxd8[J]. Frontiers in Biology, 2012 , 7(5) : 397 -403 . DOI: 10.1007/s11515-012-1247-6

Acknowledgments

JY is supported by research grants from the NIH (HL-20948).
1
Brown M S, Goldstein J L (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell, 89(3): 331–340

DOI PMID

2
Buchberger A (2002). From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol, 12(5): 216–221

DOI PMID

3
Coll T, Eyre E, Rodríguez-Calvo R, Palomer X, Sánchez R M, Merlos M, Laguna J C, Vázquez-Carrera M (2008). Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem, 283(17): 11107–11116

DOI PMID

4
DeBose-Boyd R A, Brown M S, Li W P, Nohturfft A, Goldstein J L, Espenshade P J (1999). Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell, 99(7): 703–712

DOI PMID

5
DeBose-Boyd R A, Ou J, Goldstein J L, Brown M S (2001). Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. Proc Natl Acad Sci USA, 98(4): 1477–1482

DOI PMID

6
Engelking L J, Liang G, Hammer R E, Takaishi K, Kuriyama H, Evers B M, Li W P, Horton J D, Goldstein J L, Brown M S (2005). Schoenheimer effect explained—feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin Invest, 115(9): 2489–2498

DOI PMID

7
Erion D M, Shulman G I (2010). Diacylglycerol-mediated insulin resistance. Nat Med, 16(4): 400–402

DOI PMID

8
Farese R V Jr, Walther T C (2009). Lipid droplets finally get a little R-E-S-P-E-C-T. Cell, 139(5): 855–860

DOI PMID

9
Gong Y, Lee J N, Lee P C, Goldstein J L, Brown M S, Ye J (2006). Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake. Cell Metab, 3(1): 15–24

DOI PMID

10
Halawani D, Latterich M (2006). p97: the cell’s molecular purgatory?Mol Cell, 22(6): 713–717

DOI PMID

11
Hannah V C, Ou J, Luong A, Goldstein J L, Brown M S (2001). Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem, 276(6): 4365–4372

DOI PMID

12
Harris C A, Haas J T, Streeper R S, Stone S J, Kumari M, Yang K, Han X, Brownell N, Gross R W, Zechner R, Farese R V Jr(2011). DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res, 52(4): 657–667

DOI PMID

13
Hartman I Z, Liu P, Zehmer J K, Luby-Phelps K, Jo Y, Anderson R G, DeBose-Boyd R A (2010). Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem, 285(25): 19288–19298

DOI PMID

14
Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich H D, Jentsch S (2000). Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell, 102(5): 577–586

DOI PMID

15
Horton J D, Shah N A, Warrington J A, Anderson N N, Park S W, Brown M S, Goldstein J L (2003). Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA, 100(21): 12027–12032

DOI PMID

16
Hua X, Nohturfft A, Goldstein J L, Brown M S (1996). Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell, 87(3): 415–426

DOI PMID

17
Hua X, Wu J, Goldstein J L, Brown M S, Hobbs H H (1995). Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11. 2 and 22q13. Genomics, 25(3): 667–673

DOI PMID

18
Ikeda Y, Demartino G N, Brown M S, Lee J N, Goldstein J L, Ye J (2009). Regulated endoplasmic reticulum-associated degradation of a polytopic protein: p97 recruits proteasomes to Insig-1 before extraction from membranes. J Biol Chem, 284(50): 34889–34900

DOI PMID

19
Imai Y, Nakada A, Hashida R, Sugita Y, Tanaka T, Tsujimoto G, Matsumoto K, Akasawa A, Saito H, Oshida T (2002). Cloning and characterization of the highly expressed ETEA gene from blood cells of atopic dermatitis patients. Biochem Biophys Res Commun, 297(5): 1282–1290

DOI PMID

20
Lee J N, Kim H, Yao H, Chen Y, Weng K, Ye J (2010). Identification of Ubxd8 protein as a sensor for unsaturated fatty acids and regulator of triglyceride synthesis. Proc Natl Acad Sci USA, 107(50): 21424–21429

DOI PMID

21
Lee J N, Song B, DeBose-Boyd R A, Ye J (2006). Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J Biol Chem, 281(51): 39308–39315

DOI PMID

22
Lee J N, Zhang X, Feramisco J D, Gong Y, Ye J (2008). Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step. J Biol Chem, 283(48): 33772–33783

DOI PMID

23
Mueller B, Klemm E J, Spooner E, Claessen J H, Ploegh H L (2008). SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci USA, 105(34): 12325–12330

DOI PMID

24
Ntambi J M (1992). Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem, 267(15): 10925–10930

PMID

25
Ou J, Tu H, Shan B, Luk A, DeBose-Boyd R A, Bashmakov Y, Goldstein J L, Brown M S (2001). Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci USA, 98(11): 6027–6032

DOI PMID

26
Pai J T, Guryev O, Brown M S, Goldstein J L (1998). Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem, 273(40): 26138–26148

DOI PMID

27
Phan V T, Ding V W, Li F, Chalkley R J, Burlingame A, McCormick F (2010). The RasGAP proteins Ira2 and neurofibromin are negatively regulated by Gpb1 in yeast and ETEA in humans. Mol Cell Biol, 30(9): 2264–2279

DOI PMID

28
Ploegh H L (2007). A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature, 448(7152): 435–438

DOI PMID

29
Radhakrishnan A, Goldstein J L, McDonald J G, Brown M S (2008). Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab, 8(6): 512–521

DOI PMID

30
Radhakrishnan A, Sun L P, Kwon H J, Brown M S, Goldstein J L (2004). Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Mol Cell, 15(2): 259–268

DOI PMID

31
Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S (2001). Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell, 107(5): 667–677

DOI PMID

32
Rawson R B, Cheng D, Brown M S, Goldstein J L (1998). Isolation of cholesterol-requiring mutant Chinese hamster ovary cells with defects in cleavage of sterol regulatory element-binding proteins at site 1. J Biol Chem, 273(43): 28261–28269

DOI PMID

33
Rawson R B, DeBose-Boyd R, Goldstein J L, Brown M S (1999). Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J Biol Chem, 274(40): 28549–28556

DOI PMID

34
Rawson R B, Zelenski N G, Nijhawan D, Ye J, Sakai J, Hasan M T, Chang T Y, Brown M S, Goldstein J L (1997). Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell, 1(1): 47–57

DOI PMID

35
Repa J J, Liang G, Ou J, Bashmakov Y, Lobaccaro J M, Shimomura I, Shan B, Brown M S, Goldstein J L, Mangelsdorf D J (2000). Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev, 14(22): 2819–2830

DOI PMID

36
Sakai J, Nohturfft A, Cheng D, Ho Y K, Brown M S, Goldstein J L (1997). Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem, 272(32): 20213–20221

DOI PMID

37
Sakai J, Rawson R B, Espenshade P J, Cheng D, Seegmiller A C, Goldstein J L, Brown M S (1998). Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell, 2(4): 505–514

DOI PMID

38
Schuberth C, Buchberger A (2005). Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat Cell Biol, 7(10): 999–1006

DOI PMID

39
Sever N, Lee P C, Song B L, Rawson R B, Debose-Boyd R A (2004). Isolation of mutant cells lacking Insig-1 through selection with SR-12813, an agent that stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem, 279(41): 43136–43147

DOI PMID

40
Sun L P, Li L, Goldstein J L, Brown M S (2005). Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J Biol Chem, 280(28): 26483–26490

DOI PMID

41
Suzuki M, Otsuka T, Ohsaki Y, Cheng J, Taniguchi T, Hashimoto H, Taniguchi H, Fujimoto T (2012). Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell, 23(5): 800–810

DOI PMID

42
Unger R H, Clark G O, Scherer P E, Orci L (2010). Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta, 1801(3): 209–214

DOI PMID

43
Wang C W, Lee S C (2012). The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J Cell Sci, 125(Pt 12): 2930–2939

DOI PMID

44
Yabe D, Brown M S, Goldstein J L (2002). Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins. Proc Natl Acad Sci USA, 99(20): 12753–12758

DOI PMID

45
Yang T, Espenshade P J, Wright M E, Yabe D, Gong Y, Aebersold R, Goldstein J L, Brown M S (2002). Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 110(4): 489–500

DOI PMID

46
Yen C L, Stone S J, Koliwad S, Harris C, Farese R V Jr (2008). Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res, 49(11): 2283–2301

DOI PMID

47
Zehmer J K, Bartz R, Bisel B, Liu P, Seemann J, Anderson R G (2009). Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci, 122(Pt 20): 3694–3702

DOI PMID

48
Zhao T J, Liang G, Li R L, Xie X, Sleeman M W, Murphy A J, Valenzuela D M, Yancopoulos G D, Goldstein J L, Brown M S (2010). Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc Natl Acad Sci USA, 107(16): 7467–7472

DOI PMID

Outlines

/