REVIEW

Functional protein microarray: an ideal platform for investigating protein binding property

  • Shu-Min ZHOU 1,2 ,
  • Li CHENG 1,2 ,
  • Shu-Juan GUO 1,2 ,
  • Heng ZHU , 3,4 ,
  • Sheng-Ce TAO , 1,2
Expand
  • 1. Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
  • 2. State Key Laboratory of Oncogenes and Related Genes, Shanghai 200240, China
  • 3. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
  • 4. The High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Received date: 08 May 2012

Accepted date: 04 Jun 2012

Published date: 01 Aug 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies. Besides the progresses that have been made for protein microarray fabrication, significant advancements have also been achieved for applying protein microarrays on determining a variety of protein biochemical activities. Among these applications, detection of protein binding properties, such as protein-protein interactions (PPIs), protein-DNA interactions (PDIs), protein-RNA interactions, and antigen-antibody interactions, are straightforward and have substantial impacts on many research fields. In this review, we will focus on the recent progresses in protein-protein, protein-DNA, protein-RNA, protein-small molecule, protein-lipid, protein-glycan, and antigen-antibody interactions. We will also discuss the challenges and future directions of protein microarray technologies. We strongly believe that protein microarrays will soon become an indispensible tool for both basic research and clinical applications.

Cite this article

Shu-Min ZHOU , Li CHENG , Shu-Juan GUO , Heng ZHU , Sheng-Ce TAO . Functional protein microarray: an ideal platform for investigating protein binding property[J]. Frontiers in Biology, 2012 , 7(4) : 336 -349 . DOI: 10.1007/s11515-012-1236-9

Acknowledgments

This work is supported by the National High Technology Research and Development Program of China (Nos. 2012AA020103 and 2012AA020203), the State Key Development Program for Basic Research of China (No. 2010CB529205), the National Natural Science Foundation of China (No. 31000388), and funding support to HZ from the National Institute of Health (CA160036, RR020839, DK082840, CA125807, and GM076102).
1
Angeloni S, Ridet J L, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005). Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology, 15(1): 31–41

DOI PMID

2
Angenendt P, Glökler J, Murphy D, Lehrach H, Cahill D J (2002). Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem, 309(2): 253–260

DOI PMID

3
Apweiler R, Hermjakob H, Sharon N (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1473(1): 4–8

DOI PMID

4
Avseenko N V, Morozova T Y, Ataullakhanov F I, Morozov V N (2002). Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition. Anal Chem, 74(5): 927–933

DOI PMID

5
Berger M F, Bulyk M L (2009). Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc, 4(3): 393–411

DOI PMID

6
Carlsson J, Mecklenburg M, Lundström I, Danielsson B, Winquist F (2005). Investigation of sera from various species by using lectin affinity arrays and scanning ellipsometry. Anal Chim Acta, 530(2): 167–171

DOI

7
Charles P T, Goldman E R, Rangasammy J G, Schauer C L, Chen M S, Taitt C R (2004). Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens Bioelectron, 20(4): 753–764

DOI PMID

8
Chen C S, Korobkova E, Chen H, Zhu J, Jian X, Tao S C, He C, Zhu H (2008). A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods, 5(1): 69–74

DOI PMID

9
Chen C S, Zhu H (2006). Protein microarrays. Biotechniques, 40(4): 423–429

DOI PMID

10
Chen S, Zheng T, Shortreed M R, Alexander C, Smith L M (2007). Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem, 79(15): 5698–5702

DOI PMID

11
Delehanty J B (2004). Printing functional protein microarrays using piezoelectric capillaries. Methods Mol Biol, 264: 135–143

PMID

12
Delehanty J B, Ligler F S (2003). Method for printing functional protein microarrays. Biotechniques, 34(2): 380–385

PMID

13
Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, Narimatsu H, Hirabayashi J (2006). Application of lectin microarray to crude samples: differential glycan profiling of lec mutants. J Biochem, 139(3): 323–327

DOI PMID

14
Evans-Nguyen K M, Tao S C, Zhu H, Cotter R J (2008). Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Anal Chem, 80(5): 1448–1458

DOI PMID

15
Fasolo J, Sboner A, Sun M G, Yu H, Chen R, Sharon D, Kim P M, Gerstein M, Snyder M (2011). Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev, 25(7): 767–778

DOI PMID

16
Frojmovic M, Wong T, van de Ven T (1991). Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys J, 59(4): 815–827

DOI PMID

17
Gao J, Liu D, Wang Z (2010). Screening lectin-binding specificity of bacterium by lectin microarray with gold nanoparticle probes. Anal Chem, 82(22): 9240–9247

DOI PMID

18
Gazit Y, Mory A, Etzioni A, Frydman M, Scheuerman O, Gershoni-Baruch R, Garty B Z (2010). Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol, 30(2): 308–313

DOI PMID

19
Gelperin D M, White M A, Wilkinson M L, Kon Y, Kung L A, Wise K J, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont M E, Phizicky E M, Snyder M, Grayhack E J (2005). Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev, 19(23): 2816–2826

DOI PMID

20
Hall D A, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004). Regulation of gene expression by a metabolic enzyme. Science, 306(5695): 482–484

DOI PMID

21
Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, Costa J, Haab B B (2005). Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics, 4(6): 773–784

DOI PMID

22
Hase S, Ikenaka T, Matsushima Y (1978). Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun, 85(1): 257–263

DOI PMID

23
He M, Stoevesandt O, Palmer E A, Khan F, Ericsson O, Taussig M J (2008). Printing protein arrays from DNA arrays. Nat Methods, 5(2): 175–177

DOI PMID

24
Ho S W, Jona G, Chen C T, Johnston M, Snyder M (2006). Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci USA, 103(26): 9940–9945

DOI PMID

25
Hsu K L, Mahal L K (2006). A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc, 1(2): 543–549

DOI PMID

26
Hsu K L, Pilobello K T, Mahal L K (2006). Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol, 2(3): 153–157

DOI PMID

27
Hu S, Li Y, Liu G, Song Q, Wang L, Han Y, Zhang Y, Song Y, Yao X, Tao Y, Zeng H, Yang H, Wang J, Zhu H, Chen Z N, Wu L (2007). A protein chip approach for high-throughput antigen identification and characterization. Proteomics, 7(13): 2151–2161

DOI PMID

28
Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho H S, Woodard C, Wang H, Jeong J S, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell, 139(3): 610–622

DOI PMID

29
Huang J, Zhu H, Haggarty S J, Spring D R, Hwang H, Jin F, Snyder M, Schreiber S L (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA, 101(47): 16594–16599

DOI PMID

30
Jeong J S, Jiang L, Albino E, Marrero J, Rho H S, Hu J, Hu S, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A., Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics, Online Available <month>February</month><day>3</day>, 2012

31
Jeong J S, Rho H S, Zhu H (2011). A functional protein microarray approach to characterizing posttranslational modifications on lysine residues. Methods Mol Biol, 723: 213–223

DOI PMID

32
Jones R B, Gordus A, Krall J A, MacBeath G (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 439(7073): 168–174

DOI PMID

33
Jones V W, Kenseth J R, Porter M D, Mosher C L, Henderson E (1998). Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem, 70(7): 1233–1241

DOI PMID

34
Kameyama A, Kikuchi N, Nakaya S, Ito H, Sato T, Shikanai T, Takahashi Y, Takahashi K, Narimatsu H (2005). A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem, 77(15): 4719–4725

DOI PMID

35
Kamoda S, Kakehi K (2006). Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals. Electrophoresis, 27(12): 2495–2504

DOI PMID

36
Kamoda S, Nakanishi Y, Kinoshita M, Ishikawa R, Kakehi K (2006). Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method. J Chromatogr A, 1106(1–2): 67–74

DOI PMID

37
Kollmann K, Pohl S, Marschner K, Encarnação M, Sakwa I, Tiede S, Poorthuis B J, Lübke T, Müller-Loennies S, Storch S, Braulke T (2010). Mannose phosphorylation in health and disease. Eur J Cell Biol, 89(1): 117–123

DOI PMID

38
Koshi Y, Nakata E, Yamane H, Hamachi I (2006). A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc, 128(32): 10413–10422

DOI PMID

39
Kramer A, Feilner T, Possling A, Radchuk V, Weschke W, Bürkle L, Kersten B (2004). Identification of barley CK2alpha targets by using the protein microarray technology. Phytochemistry, 65(12): 1777–1784

DOI PMID

40
Kuno A, Kato Y, Matsuda A, Kaneko M K, Ito H, Amano K, Chiba Y, Narimatsu H, Hirabayashi J (2009). Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics, 8(1): 99–108

DOI PMID

41
Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005). Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods, 2(11): 851–856

DOI PMID

42
Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel J D (2003). Antibody microarrays: an evaluation of production parameters. Proteomics, 3(3): 254–264

DOI PMID

43
Li R, Zhu J, Xie Z, Liao G, Liu J, Chen M R, Hu S, Woodard C, Lin J, Taverna S D, Desai P, Ambinder R F, Hayward G S, Qian J, Zhu H, Hayward S D (2011). Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe, 10(4): 390–400

DOI PMID

44
MacBeath G (2002). Protein microarrays and proteomics. Nat Genet, 32(Suppl): 526–532

DOI PMID

45
MacBeath G, Schreiber S L (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485): 1760–1763

PMID

46
Mecklenburg M, Svitel J, Winquist F, Gang J, Ornstein K, Dey E, Bin X, Hedborg E, Norrby R, Arwin H, Lundström I, Danielsson B (2002). Differentiation of human serum samples by surface plasmon resonance monitoring of the integral glycoprotein interaction with a lectin panel. Anal Chim Acta, 459(1): 25–31

DOI

47
Meng X, Wolfe S A (2006). Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc, 1(1): 30–45

DOI PMID

48
Michaud G A, Salcius M, Zhou F, Bangham R, Bonin J, Guo H, Snyder M, Predki P F, Schweitzer B I (2003). Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol, 21(12): 1509–1512

DOI PMID

49
Moravcevic K, Mendrola J M, Schmitz K R, Wang Y H, Slochower D, Janmey P A, Lemmon M A (2010). Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell, 143(6): 966–977

DOI PMID

50
Nielsen U B, Cardone M H, Sinskey A J, MacBeath G, Sorger P K (2003). Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA, 100(16): 9330–9335

DOI PMID

51
Ogura Y, Kurokawa K, Ooka T, Tashiro K, Tobe T, Ohnishi M, Nakayama K, Morimoto T, Terajima J, Watanabe H, Kuhara S, Hayashi T (2006). Complexity of the genomic diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai OligoDNA microarray and the Whole Genome PCR scanning. DNA Res, 13(1): 3–14

DOI PMID

52
Petukhova G V, Pezza R J, Vanevski F, Ploquin M, Masson J Y, Camerini-Otero R D (2005). The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol, 12(5): 449–453

DOI PMID

53
Pilobello K T, Krishnamoorthy L, Slawek D, Mahal L K (2005). Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem, 6(6): 985–989

DOI PMID

54
Pilobello K T, Mahal L K (2007). Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr Opin Chem Biol, 11(3): 300–305

DOI PMID

55
Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 23(1): 80–92

DOI PMID

56
Popescu S C, Popescu G V, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S P (2007a). Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA, 104(11): 4730–4735

DOI PMID

57
Popescu S C, Snyder M, Dinesh-Kumar S (2007b). Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav, 2(5): 416–420

DOI PMID

58
Poulain S, Lepelley P, Cambier N, Cosson A, Fenaux P, Wattel E (1999). Assessment of P-glycoprotein expression by immunocytochemistry and flow cytometry using two different monoclonal antibodies coupled with functional efflux analysis in 34 patients with acute myeloid leukemia. Adv Exp Med Biol, 457: 57–63

DOI PMID

59
Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068): 679–684

DOI PMID

60
Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau A Y, Walter J C, LaBaer J (2004). Self-assembling protein microarrays. Science, 305(5680): 86–90

DOI PMID

61
Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000). Protein microdeposition using a conventional ink-jet printer. Biotechniques, 28(3): 492–496

PMID

62
Shamay M, Liu J, Li R, Liao G, Shen L, Greenway M, Hu S, Zhu J, Xie Z, Ambinder R F, Qian J, Zhu H, Hayward S D (2012). A protein array screen for Kaposi’s sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. J Virol, 86(9): 5179–5191

DOI PMID

63
Shingyoji M, Gerion D, Pinkel D, Gray J W, Chen F (2005). Quantum dots-based reverse phase protein microarray. Talanta, 67(3): 472–478

DOI PMID

64
Stillman B A, Tonkinson J L (2000). FAST slides: a novel surface for microarrays. Biotechniques, 29(3): 630–635

PMID

65
Tao S C, Chen C S, Zhu H (2007). Applications of protein microarray technology. Comb Chem High Throughput Screen, 10(8): 706–718

DOI PMID

66
Tao S C, Li Y, Zhou J, Qian J, Schnaar R L, Zhang Y, Goldstein I J, Zhu H, Schneck J P (2008). Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology, 18(10): 761–769

DOI PMID

67
Tao S C, Zhu H (2006). Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol, 24(10): 1253–1254

DOI PMID

68
Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, Fukumura M, Matsushima A, Nakanishi M, Ohnuma K, Akutsu H, Umezawa A, Horimoto K, Hirabayashi J, Asashima M (2011). Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem, 286(23): 20345–20353

DOI PMID

69
Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007). A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology, 17(10): 1138–1146

DOI PMID

70
Teichmann S A, Babu M M (2004). Gene regulatory network growth by duplication. Nat Genet, 36(5): 492–496

DOI PMID

71
The ENCODE (ENCyclopedia Of DNA Elements) Project (2004). Science, 306(5696): 636–640

DOI PMID

72
Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988). Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem, 171(1): 73–90

DOI PMID

73
Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006). Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol, 415: 341–351

DOI PMID

74
Wingren C, Borrebaeck C A (2008). Antibody microarray analysis of directly labelled complex proteomes. Curr Opin Biotechnol, 19(1): 55–61

DOI PMID

75
Xie Z, Hu S, Blackshaw S, Zhu H, Qian J (2010). hPDI: a database of experimental human protein-DNA interactions. Bioinformatics, 26(2): 287–289

DOI PMID

76
Yang L, Guo S, Li Y, Zhou S, Tao S (2011). Protein microarrays for systems biology. Acta Biochim Biophys Sin (Shanghai), 43(3): 161–171

DOI PMID

77
Zajac A, Song D, Qian W, Zhukov T (2007). Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces, 58(2): 309–314

DOI PMID

78
Zheng T, Peelen D, Smith L M (2005). Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc, 127(28): 9982–9983

DOI PMID

79
Zhou S M, Cheng L, Guo S J, Zhu H, Tao S C (2011). Lectin microarray: a powerful tool for glycan related biomarker discovery. Comb Chem High Throughput Screen, Online Available <month>May</month><day>20</day>, 2011

80
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science, 293(5537): 2101–2105

DOI PMID

81
Zhu H, Snyder M (2001). Protein arrays and microarrays. Curr Opin Chem Biol, 5(1): 40–45

DOI PMID

82
Zhu J, Gopinath K, Murali A, Yi G, Hayward S D, Zhu H, Kao C (2007b). RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci USA, 104(9): 3129–3134

DOI PMID

83
Zhu X, Landry J P, Sun Y S, Gregg J P, Lam K S, Guo X (2007a). Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in a microarray format. Appl Opt, 46(10): 1890–1895

DOI PMID

84
Zhu X D, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J H, de Lange T (2003). ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell, 12(6): 1489–1498

DOI PMID

Outlines

/