Functional protein microarray: an ideal platform for investigating protein binding property
Received date: 08 May 2012
Accepted date: 04 Jun 2012
Published date: 01 Aug 2012
Copyright
Functional protein microarray is an important tool for high-throughput and large-scale systems biology studies. Besides the progresses that have been made for protein microarray fabrication, significant advancements have also been achieved for applying protein microarrays on determining a variety of protein biochemical activities. Among these applications, detection of protein binding properties, such as protein-protein interactions (PPIs), protein-DNA interactions (PDIs), protein-RNA interactions, and antigen-antibody interactions, are straightforward and have substantial impacts on many research fields. In this review, we will focus on the recent progresses in protein-protein, protein-DNA, protein-RNA, protein-small molecule, protein-lipid, protein-glycan, and antigen-antibody interactions. We will also discuss the challenges and future directions of protein microarray technologies. We strongly believe that protein microarrays will soon become an indispensible tool for both basic research and clinical applications.
Shu-Min ZHOU , Li CHENG , Shu-Juan GUO , Heng ZHU , Sheng-Ce TAO . Functional protein microarray: an ideal platform for investigating protein binding property[J]. Frontiers in Biology, 2012 , 7(4) : 336 -349 . DOI: 10.1007/s11515-012-1236-9
1 |
Angeloni S, Ridet J L, Kusy N, Gao H, Crevoisier F, Guinchard S, Kochhar S, Sigrist H, Sprenger N (2005). Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology, 15(1): 31–41
|
2 |
Angenendt P, Glökler J, Murphy D, Lehrach H, Cahill D J (2002). Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem, 309(2): 253–260
|
3 |
Apweiler R, Hermjakob H, Sharon N (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1473(1): 4–8
|
4 |
Avseenko N V, Morozova T Y, Ataullakhanov F I, Morozov V N (2002). Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition. Anal Chem, 74(5): 927–933
|
5 |
Berger M F, Bulyk M L (2009). Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc, 4(3): 393–411
|
6 |
Carlsson J, Mecklenburg M, Lundström I, Danielsson B, Winquist F (2005). Investigation of sera from various species by using lectin affinity arrays and scanning ellipsometry. Anal Chim Acta, 530(2): 167–171
|
7 |
Charles P T, Goldman E R, Rangasammy J G, Schauer C L, Chen M S, Taitt C R (2004). Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens Bioelectron, 20(4): 753–764
|
8 |
Chen C S, Korobkova E, Chen H, Zhu J, Jian X, Tao S C, He C, Zhu H (2008). A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods, 5(1): 69–74
|
9 |
Chen C S, Zhu H (2006). Protein microarrays. Biotechniques, 40(4): 423–429
|
10 |
Chen S, Zheng T, Shortreed M R, Alexander C, Smith L M (2007). Analysis of cell surface carbohydrate expression patterns in normal and tumorigenic human breast cell lines using lectin arrays. Anal Chem, 79(15): 5698–5702
|
11 |
Delehanty J B (2004). Printing functional protein microarrays using piezoelectric capillaries. Methods Mol Biol, 264: 135–143
|
12 |
Delehanty J B, Ligler F S (2003). Method for printing functional protein microarrays. Biotechniques, 34(2): 380–385
|
13 |
Ebe Y, Kuno A, Uchiyama N, Koseki-Kuno S, Yamada M, Sato T, Narimatsu H, Hirabayashi J (2006). Application of lectin microarray to crude samples: differential glycan profiling of lec mutants. J Biochem, 139(3): 323–327
|
14 |
Evans-Nguyen K M, Tao S C, Zhu H, Cotter R J (2008). Protein arrays on patterned porous gold substrates interrogated with mass spectrometry: detection of peptides in plasma. Anal Chem, 80(5): 1448–1458
|
15 |
Fasolo J, Sboner A, Sun M G, Yu H, Chen R, Sharon D, Kim P M, Gerstein M, Snyder M (2011). Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes Dev, 25(7): 767–778
|
16 |
Frojmovic M, Wong T, van de Ven T (1991). Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. I. Methodology, theory and results for two distinct activators. Biophys J, 59(4): 815–827
|
17 |
Gao J, Liu D, Wang Z (2010). Screening lectin-binding specificity of bacterium by lectin microarray with gold nanoparticle probes. Anal Chem, 82(22): 9240–9247
|
18 |
Gazit Y, Mory A, Etzioni A, Frydman M, Scheuerman O, Gershoni-Baruch R, Garty B Z (2010). Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol, 30(2): 308–313
|
19 |
Gelperin D M, White M A, Wilkinson M L, Kon Y, Kung L A, Wise K J, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont M E, Phizicky E M, Snyder M, Grayhack E J (2005). Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev, 19(23): 2816–2826
|
20 |
Hall D A, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004). Regulation of gene expression by a metabolic enzyme. Science, 306(5695): 482–484
|
21 |
Hamelinck D, Zhou H, Li L, Verweij C, Dillon D, Feng Z, Costa J, Haab B B (2005). Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics, 4(6): 773–784
|
22 |
Hase S, Ikenaka T, Matsushima Y (1978). Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem Biophys Res Commun, 85(1): 257–263
|
23 |
He M, Stoevesandt O, Palmer E A, Khan F, Ericsson O, Taussig M J (2008). Printing protein arrays from DNA arrays. Nat Methods, 5(2): 175–177
|
24 |
Ho S W, Jona G, Chen C T, Johnston M, Snyder M (2006). Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci USA, 103(26): 9940–9945
|
25 |
Hsu K L, Mahal L K (2006). A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc, 1(2): 543–549
|
26 |
Hsu K L, Pilobello K T, Mahal L K (2006). Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol, 2(3): 153–157
|
27 |
Hu S, Li Y, Liu G, Song Q, Wang L, Han Y, Zhang Y, Song Y, Yao X, Tao Y, Zeng H, Yang H, Wang J, Zhu H, Chen Z N, Wu L (2007). A protein chip approach for high-throughput antigen identification and characterization. Proteomics, 7(13): 2151–2161
|
28 |
Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, Rho H S, Woodard C, Wang H, Jeong J S, Long S, He X, Wade H, Blackshaw S, Qian J, Zhu H (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell, 139(3): 610–622
|
29 |
Huang J, Zhu H, Haggarty S J, Spring D R, Hwang H, Jin F, Snyder M, Schreiber S L (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA, 101(47): 16594–16599
|
30 |
Jeong J S, Jiang L, Albino E, Marrero J, Rho H S, Hu J, Hu S, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A., Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics, Online Available <month>February</month><day>3</day>, 2012
|
31 |
Jeong J S, Rho H S, Zhu H (2011). A functional protein microarray approach to characterizing posttranslational modifications on lysine residues. Methods Mol Biol, 723: 213–223
|
32 |
Jones R B, Gordus A, Krall J A, MacBeath G (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 439(7073): 168–174
|
33 |
Jones V W, Kenseth J R, Porter M D, Mosher C L, Henderson E (1998). Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem, 70(7): 1233–1241
|
34 |
Kameyama A, Kikuchi N, Nakaya S, Ito H, Sato T, Shikanai T, Takahashi Y, Takahashi K, Narimatsu H (2005). A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem, 77(15): 4719–4725
|
35 |
Kamoda S, Kakehi K (2006). Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals. Electrophoresis, 27(12): 2495–2504
|
36 |
Kamoda S, Nakanishi Y, Kinoshita M, Ishikawa R, Kakehi K (2006). Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method. J Chromatogr A, 1106(1–2): 67–74
|
37 |
Kollmann K, Pohl S, Marschner K, Encarnação M, Sakwa I, Tiede S, Poorthuis B J, Lübke T, Müller-Loennies S, Storch S, Braulke T (2010). Mannose phosphorylation in health and disease. Eur J Cell Biol, 89(1): 117–123
|
38 |
Koshi Y, Nakata E, Yamane H, Hamachi I (2006). A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc, 128(32): 10413–10422
|
39 |
Kramer A, Feilner T, Possling A, Radchuk V, Weschke W, Bürkle L, Kersten B (2004). Identification of barley CK2alpha targets by using the protein microarray technology. Phytochemistry, 65(12): 1777–1784
|
40 |
Kuno A, Kato Y, Matsuda A, Kaneko M K, Ito H, Amano K, Chiba Y, Narimatsu H, Hirabayashi J (2009). Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics, 8(1): 99–108
|
41 |
Kuno A, Uchiyama N, Koseki-Kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J (2005). Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods, 2(11): 851–856
|
42 |
Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel J D (2003). Antibody microarrays: an evaluation of production parameters. Proteomics, 3(3): 254–264
|
43 |
Li R, Zhu J, Xie Z, Liao G, Liu J, Chen M R, Hu S, Woodard C, Lin J, Taverna S D, Desai P, Ambinder R F, Hayward G S, Qian J, Zhu H, Hayward S D (2011). Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe, 10(4): 390–400
|
44 |
MacBeath G (2002). Protein microarrays and proteomics. Nat Genet, 32(Suppl): 526–532
|
45 |
MacBeath G, Schreiber S L (2000). Printing proteins as microarrays for high-throughput function determination. Science, 289(5485): 1760–1763
|
46 |
Mecklenburg M, Svitel J, Winquist F, Gang J, Ornstein K, Dey E, Bin X, Hedborg E, Norrby R, Arwin H, Lundström I, Danielsson B (2002). Differentiation of human serum samples by surface plasmon resonance monitoring of the integral glycoprotein interaction with a lectin panel. Anal Chim Acta, 459(1): 25–31
|
47 |
Meng X, Wolfe S A (2006). Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc, 1(1): 30–45
|
48 |
Michaud G A, Salcius M, Zhou F, Bangham R, Bonin J, Guo H, Snyder M, Predki P F, Schweitzer B I (2003). Analyzing antibody specificity with whole proteome microarrays. Nat Biotechnol, 21(12): 1509–1512
|
49 |
Moravcevic K, Mendrola J M, Schmitz K R, Wang Y H, Slochower D, Janmey P A, Lemmon M A (2010). Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Cell, 143(6): 966–977
|
50 |
Nielsen U B, Cardone M H, Sinskey A J, MacBeath G, Sorger P K (2003). Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA, 100(16): 9330–9335
|
51 |
Ogura Y, Kurokawa K, Ooka T, Tashiro K, Tobe T, Ohnishi M, Nakayama K, Morimoto T, Terajima J, Watanabe H, Kuhara S, Hayashi T (2006). Complexity of the genomic diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai OligoDNA microarray and the Whole Genome PCR scanning. DNA Res, 13(1): 3–14
|
52 |
Petukhova G V, Pezza R J, Vanevski F, Ploquin M, Masson J Y, Camerini-Otero R D (2005). The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol, 12(5): 449–453
|
53 |
Pilobello K T, Krishnamoorthy L, Slawek D, Mahal L K (2005). Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem, 6(6): 985–989
|
54 |
Pilobello K T, Mahal L K (2007). Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr Opin Chem Biol, 11(3): 300–305
|
55 |
Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 23(1): 80–92
|
56 |
Popescu S C, Popescu G V, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar S P (2007a). Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA, 104(11): 4730–4735
|
57 |
Popescu S C, Snyder M, Dinesh-Kumar S (2007b). Arabidopsis protein microarrays for the high-throughput identification of protein-protein interactions. Plant Signal Behav, 2(5): 416–420
|
58 |
Poulain S, Lepelley P, Cambier N, Cosson A, Fenaux P, Wattel E (1999). Assessment of P-glycoprotein expression by immunocytochemistry and flow cytometry using two different monoclonal antibodies coupled with functional efflux analysis in 34 patients with acute myeloid leukemia. Adv Exp Med Biol, 457: 57–63
|
59 |
Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068): 679–684
|
60 |
Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau A Y, Walter J C, LaBaer J (2004). Self-assembling protein microarrays. Science, 305(5680): 86–90
|
61 |
Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000). Protein microdeposition using a conventional ink-jet printer. Biotechniques, 28(3): 492–496
|
62 |
Shamay M, Liu J, Li R, Liao G, Shen L, Greenway M, Hu S, Zhu J, Xie Z, Ambinder R F, Qian J, Zhu H, Hayward S D (2012). A protein array screen for Kaposi’s sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. J Virol, 86(9): 5179–5191
|
63 |
Shingyoji M, Gerion D, Pinkel D, Gray J W, Chen F (2005). Quantum dots-based reverse phase protein microarray. Talanta, 67(3): 472–478
|
64 |
Stillman B A, Tonkinson J L (2000). FAST slides: a novel surface for microarrays. Biotechniques, 29(3): 630–635
|
65 |
Tao S C, Chen C S, Zhu H (2007). Applications of protein microarray technology. Comb Chem High Throughput Screen, 10(8): 706–718
|
66 |
Tao S C, Li Y, Zhou J, Qian J, Schnaar R L, Zhang Y, Goldstein I J, Zhu H, Schneck J P (2008). Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology, 18(10): 761–769
|
67 |
Tao S C, Zhu H (2006). Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol, 24(10): 1253–1254
|
68 |
Tateno H, Toyota M, Saito S, Onuma Y, Ito Y, Hiemori K, Fukumura M, Matsushima A, Nakanishi M, Ohnuma K, Akutsu H, Umezawa A, Horimoto K, Hirabayashi J, Asashima M (2011). Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem, 286(23): 20345–20353
|
69 |
Tateno H, Uchiyama N, Kuno A, Togayachi A, Sato T, Narimatsu H, Hirabayashi J (2007). A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology, 17(10): 1138–1146
|
70 |
Teichmann S A, Babu M M (2004). Gene regulatory network growth by duplication. Nat Genet, 36(5): 492–496
|
71 |
The ENCODE (ENCyclopedia Of DNA Elements) Project (2004). Science, 306(5696): 636–640
|
72 |
Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988). Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem, 171(1): 73–90
|
73 |
Uchiyama N, Kuno A, Koseki-Kuno S, Ebe Y, Horio K, Yamada M, Hirabayashi J (2006). Development of a lectin microarray based on an evanescent-field fluorescence principle. Methods Enzymol, 415: 341–351
|
74 |
Wingren C, Borrebaeck C A (2008). Antibody microarray analysis of directly labelled complex proteomes. Curr Opin Biotechnol, 19(1): 55–61
|
75 |
Xie Z, Hu S, Blackshaw S, Zhu H, Qian J (2010). hPDI: a database of experimental human protein-DNA interactions. Bioinformatics, 26(2): 287–289
|
76 |
Yang L, Guo S, Li Y, Zhou S, Tao S (2011). Protein microarrays for systems biology. Acta Biochim Biophys Sin (Shanghai), 43(3): 161–171
|
77 |
Zajac A, Song D, Qian W, Zhukov T (2007). Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B Biointerfaces, 58(2): 309–314
|
78 |
Zheng T, Peelen D, Smith L M (2005). Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc, 127(28): 9982–9983
|
79 |
Zhou S M, Cheng L, Guo S J, Zhu H, Tao S C (2011). Lectin microarray: a powerful tool for glycan related biomarker discovery. Comb Chem High Throughput Screen, Online Available <month>May</month><day>20</day>, 2011
|
80 |
Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science, 293(5537): 2101–2105
|
81 |
Zhu H, Snyder M (2001). Protein arrays and microarrays. Curr Opin Chem Biol, 5(1): 40–45
|
82 |
Zhu J, Gopinath K, Murali A, Yi G, Hayward S D, Zhu H, Kao C (2007b). RNA-binding proteins that inhibit RNA virus infection. Proc Natl Acad Sci USA, 104(9): 3129–3134
|
83 |
Zhu X, Landry J P, Sun Y S, Gregg J P, Lam K S, Guo X (2007a). Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in a microarray format. Appl Opt, 46(10): 1890–1895
|
84 |
Zhu X D, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J H, de Lange T (2003). ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell, 12(6): 1489–1498
|
/
〈 | 〉 |