REVIEW

Significance of the potential role of pharmacological MRI (phMRI) in diagnosis of Parkinson’s disease

  • Feng YUE 1 ,
  • Piu CHAN 1 ,
  • Zhiming ZHANG , 2
Expand
  • 1. Department of Neurobiology and Neurology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China
  • 2. Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA

Received date: 02 Apr 2012

Accepted date: 10 May 2012

Published date: 01 Aug 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The initial diagnosis of Parkinson’s disease (PD) is currently based on a clinical assessment. Many patients who receive an initial diagnosis of PD have parkinsonian features related to other diseases such as essential tremor, vascular parkinsonism and atypical parkinsonian disorder. It has been challenging to differentiate PD from those disorders, especially in the early disease stages, due to an overlap of clinical signs and symptoms. Therefore, there is a great need for development of noninvasive, highly sensitive, and widely available imaging methods that can potentially be used to assistant physicians to make more accurate diagnosis of the disease; and to longitudinally monitor treatment of PD. Recent advance of pharmacological MRI (phMRI) technology allows non-invasively mapping functional stages for nigrostriatal dopamine (DA) system. This article aims to review research findings primarily from our group in nonhuman primates modeling the neurodegenerative disease on the value of phMRI techniques in the diagnosis of PD.

Cite this article

Feng YUE , Piu CHAN , Zhiming ZHANG . Significance of the potential role of pharmacological MRI (phMRI) in diagnosis of Parkinson’s disease[J]. Frontiers in Biology, 2012 , 7(4) : 307 -312 . DOI: 10.1007/s11515-012-1023-7

1
Andersen A H, Zhang Z, Barber T, Rayens W S, Zhang J, Grondin R, Hardy P, Gerhardt G A, Gash D M (2002). Functional MRI studies in awake rhesus monkeys: methodological and analytical strategies. J Neurosci Methods, 118(2): 141-152

DOI PMID

2
Arthurs O J, Boniface S (2002). How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci, 25(1):27-31

3
Braak H, Del Tredici K (2008). Cortico-basal ganglia-cortical circuitry in Parkinson’s disease reconsidered. Exp Neurol, 212(1): 226-229

DOI PMID

4
Chen Q, Andersen A H, Zhang Z, Ovadia A, Gash D M, Avison M J (1996). Mapping drug-induced changes in cerebral R2* by Multiple Gradient Recalled Echo functional MRI. Magn Reson Imaging, 14(5): 469-476

DOI PMID

5
Chin C L, Tovcimak A E, Hradil V P, Seifert T R, Hollingsworth P R, Chandran P, Zhu C Z, Gauvin D, Pai M, Wetter J, Hsieh G C, Honore P, Frost J M, Dart M J, Meyer M D, Yao B B, Cox B F, Fox G B (2008). Differential effects of cannabinoid receptor agonists on regional brain activity using pharmacological MRI. Br J Pharmacol, 153(2): 367-379

DOI PMID

6
Ding F, Luan L, Ai Y, Walton A, Gerhardt G A, Gash D M, Grondin R, Zhang Z (2008). Development of a stable, early stage unilateral model of Parkinson’s disease in middle-aged rhesus monkeys. Exp Neurol, 212(2): 431-439

DOI PMID

7
Fearnley J M, Lees A J (1991). Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain, 114(5): 2283-2301

DOI PMID

8
Honey G, Bullmore E (2004). Human pharmacological MRI. Trends Pharmacol Sci, 25(7): 366-374

DOI PMID

9
Jenkins B G, Sanchez-Pernaute R, Brownell A L, Chen Y C, Isacson O (2004). Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. J Neurosci, 24(43): 9553-9560

DOI PMID

10
Langston J W, Ballard P A Jr (1983). Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med, 309(5): 310-321

DOI PMID

11
Nguyen T V, Brownell A L, Iris Chen Y C, Livni E, Coyle J T, Rosen B R, Cavagna F, Jenkins B G (2000). Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse, 36(1): 57-65

DOI PMID

12
Nicklas W J, Youngster S K, Kindt M V, Heikkila R E (1987). MPTP, MPP+ and mitochondrial function. Life Sci, 40(8): 721-729

DOI PMID

13
Pavese N, Brooks D J (2009). Imaging neurodegeneration in Parkinson’s disease. Biochim Biophys Acta, 1792(7): 722-729

PMID

14
Rasmussen I Jr (2010). Psychopharmacological MRI. Acta Neuropsychiatr, 22(1): 38-39

DOI

15
Richardson J R, Caudle W M, Guillot T S, Watson J L, Nakamaru-Ogiso E, Seo B B, Sherer T B, Greenamyre J T, Yagi T, Matsuno-Yagi A, Miller G W (2007). Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci, 95(1): 196-204

DOI PMID

16
Thiel C M (2009). Neuropharmacological fMRI. Neuropharmakologisches fMRT, 40: 233-238

17
Tracey I (2001). Prospects for human pharmacological functional magnetic resonance imaging (phMRI). J Clin Pharmacol, Suppl: 21S-28S

PMID

18
Wu Y, Le W, Jankovic J (2011). Preclinical biomarkers of Parkinson disease. Arch Neurol, 68(1): 22-30

DOI PMID

19
Zhang Z, Andersen A, Grondin R, Barber T, Avison R, Gerhardt G, Gash D (2001). Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys. Neuroimage, 14(5): 1159-1167

DOI PMID

20
Zhang Z, Andersen A H, Ai Y, Loveland A, Hardy P A, Gerhardt G A, Gash D M (2006). Assessing nigrostriatal dysfunctions by pharmacological MRI in parkinsonian rhesus macaques. Neuroimage, 33, 636-643

21
Zhang Z, Andersen A, Grondin R, Barber T, Avison R, Gerhardt G, Gash D (2001). Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys. Neuroimage, 14(5): 1159-1167

DOI

Outlines

/