The neurobiology of sensing respiratory gases for the control of animal behavior
Received date: 28 Jan 2012
Accepted date: 09 Mar 2012
Published date: 01 Jun 2012
Copyright
Aerobic metabolism is fundamental for almost all animal life. Cellular consumption of oxygen (O2) and production of carbon dioxide (CO2) signal metabolic states and physiologic stresses. These respiratory gases are also detected as environmental cues that can signal external food quality and the presence of prey, predators and mates. In both contexts, animal nervous systems are endowed with mechanisms for sensing O2/CO2 to trigger appropriate behaviors and maintain homeostasis of internal O2/CO2. Although different animal species show different behavioral responses to O2/CO2, some underlying molecular mechanisms and pathways that function in the detection of respiratory gases are fundamentally similar and evolutionarily conserved. Studies of Caenorhabditis elegans and Drosophila melanogaster have identified roles for cyclic nucleotide signaling and the hypoxia inducible factor (HIF) transcriptional pathway in mediating behavioral responses to respiratory gases. Understanding how simple invertebrate nervous systems detect respiratory gases to control behavior might reveal general principles common to nematodes, insects and vertebrates that function in the molecular sensing of respiratory gases and the neural control of animal behaviors.
Key words: oxygen; carbon dioxide; C. elegans; Drosophila; respiratory gases; animal behaviors
Dengke K. MA , Niels RINGSTAD . The neurobiology of sensing respiratory gases for the control of animal behavior[J]. Frontiers in Biology, 2012 , 7(3) : 246 -253 . DOI: 10.1007/s11515-012-1219-x
1 |
Anderson J F, Ultsch G R (1987). Respiratory gas concentrations in the microhabitats of some Florida arthropods. Comp Biochem Physiol Part A Physiol, 88(3): 585-588
|
2 |
Bargmann C I, Hartwieg E, Horvitz H R (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell, 74(3): 515-527
|
3 |
Bickler P E, Donohoe P H (2002). Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol, 205(Pt 23): 3579-3586
|
4 |
Brandt J P, Aziz-Zaman S, Juozaityte V, Martinez-Velazquez L A, Petersen J G, Pocock R, Ringstad N (2012). A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity. PLoS ONE, (In press)
|
5 |
Bretscher A J, Busch K E, de Bono M (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci USA, 105(23): 8044-8049
|
6 |
Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba N J, Zuker C S (2009). The taste of carbonation. Science, 326(5951): 443-445
|
7 |
Chang A J, Bargmann C I (2008). Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci USA, 105(20): 7321-7326
|
8 |
Ehrismann D, Flashman E, Genn D N, Mathioudakis N, Hewitson K S, Ratcliffe P J, Schofield C J (2007). Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem J, 401(1): 227-234
|
9 |
Epstein A C, Gleadle J M, McNeill L A, Hewitson K S, O’Rourke J, Mole D R, Mukherji M, Metzen E, Wilson M I, Dhanda A, Tian Y M, Masson N, Hamilton D L, Jaakkola P, Barstead R, Hodgkin J, Maxwell P H, Pugh C W, Schofield C J, Ratcliffe P J (2001). C. elegansEGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107(1): 43-54
|
10 |
Félix M A, Braendle C (2010). The natural history of Caenorhabditis elegans. Curr Biol, 20(22): R965-R969
|
11 |
Fischler W, Kong P, Marella S, Scott K (2007). The detection of carbonation by the Drosophila gustatory system. Nature, 448(7157): 1054-1057
|
12 |
Gourine A V, Kasymov V, Marina N, Tang F, Figueiredo M F, Lane S, Teschemacher A G, Spyer K M, Deisseroth K, Kasparov S (2010). Astrocytes control breathing through pH-dependent release of ATP. Science, 329(5991): 571-575
|
13 |
Gourine A V, Llaudet E, Dale N, Spyer K M (2005). ATP is a mediator of chemosensory transduction in the central nervous system. Nature, 436(7047): 108-111
|
14 |
Gray J M, Karow D S, Lu H, Chang A J, Chang J S, Ellis R E, Marletta M A, Bargmann C I (2004). Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature, 430(6997): 317-322
|
15 |
Guerenstein P G, Hildebrand J G (2008). Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol, 53(1): 161-178
|
16 |
Guillermin M L, Castelletto M L, Hallem E A (2011). Differentiation of carbon dioxide-sensing neurons in Caenorhabditis elegans requires the ETS-5 transcription factor. Genetics, 189(4): 1327-1339
|
17 |
Guo D, Zhang J J, Huang X Y (2009). Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry, 48(20): 4417-4422
|
18 |
Hallem E A, Spencer W C, McWhirter R D, Zeller G, Henz S R, Rätsch G, Miller D M 3rd, Horvitz H R, Sternberg P W, Ringstad N (2011). Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc Natl Acad Sci USA, 108(1): 254-259
|
19 |
Hallem E A, Sternberg P W (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci USA, 105(23): 8038-8043
|
20 |
Hendricks T, Francis N, Fyodorov D, Deneris E S (1999). The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci, 19(23): 10348-10356
|
21 |
Hodges M R, Tattersall G J, Harris M B, McEvoy S D, Richerson D N, Deneris E S, Johnson R L, Chen Z F, Richerson G B (2008). Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci, 28(10): 2495-2505
|
22 |
Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007). Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science, 317(5840): 953-957
|
23 |
Huang S H, Rio D C, Marletta M A (2007). Ligand binding and inhibition of an oxygen-sensitive soluble guanylate cyclase, Gyc-88E, from Drosophila. Biochemistry, 46(51): 15115-15122
|
24 |
Jones W D, Cayirlioglu P, Kadow I G, Vosshall L B (2007). Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature, 445(7123): 86-90
|
25 |
Kimura H (2010). Hydrogen sulfide: from brain to gut. Antioxid Redox Signal, 12(9): 1111-1123
|
26 |
Klein D F (1993). False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Arch Gen Psychiatry, 50(4): 306-317
|
27 |
Lenton T M T (2003). The Coupled Evolution of Life and Atmospheric Oxygen. Amsterdam: Elsevier Science
|
28 |
Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang L H, Rong W (2010). A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal, 12(10): 1179-1189
|
29 |
Loenarz C, Coleman M L, Boleininger A, Schierwater B, Holland P W, Ratcliffe P J, Schofield C J (2011). The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep, 12(1): 63-70
|
30 |
Luo M, Sun L, Hu J (2009). Neural detection of gases—carbon dioxide, oxygen—in vertebrates and invertebrates. Curr Opin Neurobiol, 19(4): 354-361
|
31 |
Ma D K, Vozdek R, Bhatla N, Horvitz H R (2012). CYSL-1 Interacts with the O2-sensing Hydroxylase EGL-9 to Promote H2S-modulated Hypoxia-induced behavioral plasticity in C. elegans. Neuron, 73(5): 925-940
|
32 |
Maina J N (1998). The Gas Exchangers: Structure, Function, and Evolution of the Respiratory Processes. Berlin: Springer
|
33 |
McGrath P T, Rockman M V, Zimmer M, Jang H, Macosko E Z, Kruglyak L, Bargmann C I (2009). Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron, 61(5): 692-699
|
34 |
Morton D B (2004). Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors. J Biol Chem, 279(49): 50651-50653
|
35 |
Morton D B (2011). Behavioral responses to hypoxia and hyperoxia in Drosophila larvae: molecular and neuronal sensors. Fly (Austin), 5(2): 119-125
|
36 |
Olson K R (2011a). Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol, 179(2-3): 103-110
|
37 |
Olson K R (2011b). The therapeutic potential of hydrogen sulfide: separating hype from hope. Am J Physiol Regul Integr Comp Physiol, 301(20): R297-R312
|
38 |
Olson K R, Dombkowski R A, Russell M J, Doellman M M, Head S K, Whitfield N L, Madden J A (2006). Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol, 209(Pt 20): 4011-4023
|
39 |
Olson K R, Whitfield N L (2010). Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal, 12(10): 1219-1234
|
40 |
Padilla P A, Nystul T G, Zager R A, Johnson A C, Roth M B (2002). Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. Mol Biol Cell, 13(5): 1473-1483
|
41 |
Papp L A, Klein D F, Gorman J M (1993). Carbon dioxide hypersensitivity, hyperventilation, and panic disorder. Am J Psychiatry, 150(8): 1149-1157
|
42 |
Peng Y J, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla M M, Kumar G K, Snyder S H, Prabhakar N R (2010). H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA, 107(23): 10719-10724
|
43 |
Persson A, Gross E, Laurent P, Busch K E, Bretes H, de Bono M (2009). Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature, 458(7241): 1030-1033
|
44 |
Pocock R, Hobert O (2010). Hypoxia activates a latent circuit for processing gustatory information in C. elegans. Nat Neurosci, 13(5): 610-614
|
45 |
Potter L R (2011). Guanylyl cyclase structure, function and regulation. Cell Signal, 23(12): 1921-1926
|
46 |
Powell-Coffman J A (2010). Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab, 21(7): 435-440
|
47 |
Prabhakar N R (2005). O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol, 91(1): 17-23
|
48 |
Quaegebeur A, Carmeliet P (2010). Oxygen sensing: a common crossroad in cancer and neurodegeneration. Curr Top Microbiol Immunol, 345: 71-103
|
49 |
Ray R S, Corcoran A E, Brust R D, Kim J C, Richerson G B, Nattie E, Dymecki S M (2011). Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science, 333(6042): 637-642
|
50 |
Richerson G B (2004). Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci, 5(6): 449-461
|
51 |
Scott K (2011). Out of thin air: sensory detection of oxygen and carbon dioxide. Neuron, 69(2): 194-202
|
52 |
Semenza G L (2011a). Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta, 1813(7): 1263-1268
|
53 |
Semenza G L (2011b). Oxygen sensing, homeostasis, and disease. N Engl J Med, 365(6): 537-547
|
54 |
Singh S, Padovani D, Leslie R A, Chiku T, Banerjee R (2009). Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem, 284(33): 22457-22466
|
55 |
Spyer K M (2009). To breathe or not to breathe? That is the question. Exp Physiol, 94(1): 1-10
|
56 |
Suh G S, Wong A M, Hergarden A C, Wang J W, Simon A F, Benzer S, Axel R, Anderson D J (2004). A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature, 431(7010): 854-859
|
57 |
Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009). Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA, 106(6): 2041-2046
|
58 |
Teppema L J, Dahan A (2010). The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev, 90(2): 675-754
|
59 |
Vermehren-Schmaedick A, Ainsley J A, Johnson W A, Davies S A, Morton D B (2010). Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics, 186(1): 183-196
|
60 |
Vozdek R, Hnizda A, Krijt J, Kostrouchova M, Kozich V (2012). Novel structural arrangement of nematode cystathionine beta-synthases: characterization of Caenorhabditis elegans CBS-1. Biochem J, Available online 13 Jan 2012
|
61 |
Ward J P (2008). Oxygen sensors in context. Biochim Biophys Acta, 1777(1): 1-14
|
62 |
Yu S, Avery L, Baude E, Garbers D L (1997). Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci USA, 94(7): 3384-3387
|
63 |
Ziemann A E, Allen J E, Dahdaleh N S, Drebot I I, Coryell M W, Wunsch A M, Lynch C M, Faraci F M, Howard M A 3rd, Welsh M J, Wemmie J A (2009). The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell, 139(5): 1012-1021
|
64 |
ZimmerM, GrayJ M, PokalaN, ChangA J, KarowD S, MarlettaM A, HudsonM L, MortonD B, ChronisN, BargmannC I(2009). Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron, 61(6): 865-879
|
/
〈 |
|
〉 |