REVIEW

The neurobiology of sensing respiratory gases for the control of animal behavior

  • Dengke K. MA , 1 ,
  • Niels RINGSTAD , 2
Expand
  • 1. Department of Biology, McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
  • 2. Department of Cell Biology and the Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016, USA

Received date: 28 Jan 2012

Accepted date: 09 Mar 2012

Published date: 01 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Aerobic metabolism is fundamental for almost all animal life. Cellular consumption of oxygen (O2) and production of carbon dioxide (CO2) signal metabolic states and physiologic stresses. These respiratory gases are also detected as environmental cues that can signal external food quality and the presence of prey, predators and mates. In both contexts, animal nervous systems are endowed with mechanisms for sensing O2/CO2 to trigger appropriate behaviors and maintain homeostasis of internal O2/CO2. Although different animal species show different behavioral responses to O2/CO2, some underlying molecular mechanisms and pathways that function in the detection of respiratory gases are fundamentally similar and evolutionarily conserved. Studies of Caenorhabditis elegans and Drosophila melanogaster have identified roles for cyclic nucleotide signaling and the hypoxia inducible factor (HIF) transcriptional pathway in mediating behavioral responses to respiratory gases. Understanding how simple invertebrate nervous systems detect respiratory gases to control behavior might reveal general principles common to nematodes, insects and vertebrates that function in the molecular sensing of respiratory gases and the neural control of animal behaviors.

Cite this article

Dengke K. MA , Niels RINGSTAD . The neurobiology of sensing respiratory gases for the control of animal behavior[J]. Frontiers in Biology, 2012 , 7(3) : 246 -253 . DOI: 10.1007/s11515-012-1219-x

Acknowledgments

We thank Nikhil Bhatla for discussion and comments. D.K.M. is supported by a Helen Hay Whitney Foundation postdoctoral fellowship. N. R. is supported by the NIGMS (R01-GM098320), the Edward Mallinckrodt Jr. Foundation and the Pew Scholars Program.
1
Anderson J F, Ultsch G R (1987). Respiratory gas concentrations in the microhabitats of some Florida arthropods. Comp Biochem Physiol Part A Physiol, 88(3): 585-588

DOI

2
Bargmann C I, Hartwieg E, Horvitz H R (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell, 74(3): 515-527

DOI PMID

3
Bickler P E, Donohoe P H (2002). Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol, 205(Pt 23): 3579-3586

PMID

4
Brandt J P, Aziz-Zaman S, Juozaityte V, Martinez-Velazquez L A, Petersen J G, Pocock R, Ringstad N (2012). A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity. PLoS ONE, (In press)

5
Bretscher A J, Busch K E, de Bono M (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci USA, 105(23): 8044-8049

DOI PMID

6
Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba N J, Zuker C S (2009). The taste of carbonation. Science, 326(5951): 443-445

DOI PMID

7
Chang A J, Bargmann C I (2008). Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci USA, 105(20): 7321-7326

DOI PMID

8
Ehrismann D, Flashman E, Genn D N, Mathioudakis N, Hewitson K S, Ratcliffe P J, Schofield C J (2007). Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem J, 401(1): 227-234

DOI PMID

9
Epstein A C, Gleadle J M, McNeill L A, Hewitson K S, O’Rourke J, Mole D R, Mukherji M, Metzen E, Wilson M I, Dhanda A, Tian Y M, Masson N, Hamilton D L, Jaakkola P, Barstead R, Hodgkin J, Maxwell P H, Pugh C W, Schofield C J, Ratcliffe P J (2001). C. elegansEGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107(1): 43-54

DOI PMID

10
Félix M A, Braendle C (2010). The natural history of Caenorhabditis elegans. Curr Biol, 20(22): R965-R969

DOI PMID

11
Fischler W, Kong P, Marella S, Scott K (2007). The detection of carbonation by the Drosophila gustatory system. Nature, 448(7157): 1054-1057

DOI PMID

12
Gourine A V, Kasymov V, Marina N, Tang F, Figueiredo M F, Lane S, Teschemacher A G, Spyer K M, Deisseroth K, Kasparov S (2010). Astrocytes control breathing through pH-dependent release of ATP. Science, 329(5991): 571-575

DOI PMID

13
Gourine A V, Llaudet E, Dale N, Spyer K M (2005). ATP is a mediator of chemosensory transduction in the central nervous system. Nature, 436(7047): 108-111

DOI PMID

14
Gray J M, Karow D S, Lu H, Chang A J, Chang J S, Ellis R E, Marletta M A, Bargmann C I (2004). Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature, 430(6997): 317-322

DOI PMID

15
Guerenstein P G, Hildebrand J G (2008). Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol, 53(1): 161-178

DOI PMID

16
Guillermin M L, Castelletto M L, Hallem E A (2011). Differentiation of carbon dioxide-sensing neurons in Caenorhabditis elegans requires the ETS-5 transcription factor. Genetics, 189(4): 1327-1339

DOI PMID

17
Guo D, Zhang J J, Huang X Y (2009). Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry, 48(20): 4417-4422

DOI PMID

18
Hallem E A, Spencer W C, McWhirter R D, Zeller G, Henz S R, Rätsch G, Miller D M 3rd, Horvitz H R, Sternberg P W, Ringstad N (2011). Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc Natl Acad Sci USA, 108(1): 254-259

DOI PMID

19
Hallem E A, Sternberg P W (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci USA, 105(23): 8038-8043

DOI PMID

20
Hendricks T, Francis N, Fyodorov D, Deneris E S (1999). The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci, 19(23): 10348-10356

PMID

21
Hodges M R, Tattersall G J, Harris M B, McEvoy S D, Richerson D N, Deneris E S, Johnson R L, Chen Z F, Richerson G B (2008). Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci, 28(10): 2495-2505

DOI PMID

22
Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007). Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science, 317(5840): 953-957

DOI PMID

23
Huang S H, Rio D C, Marletta M A (2007). Ligand binding and inhibition of an oxygen-sensitive soluble guanylate cyclase, Gyc-88E, from Drosophila. Biochemistry, 46(51): 15115-15122

DOI PMID

24
Jones W D, Cayirlioglu P, Kadow I G, Vosshall L B (2007). Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature, 445(7123): 86-90

DOI PMID

25
Kimura H (2010). Hydrogen sulfide: from brain to gut. Antioxid Redox Signal, 12(9): 1111-1123

DOI PMID

26
Klein D F (1993). False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Arch Gen Psychiatry, 50(4): 306-317

DOI PMID

27
Lenton T M T (2003). The Coupled Evolution of Life and Atmospheric Oxygen. Amsterdam: Elsevier Science

28
Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang L H, Rong W (2010). A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal, 12(10): 1179-1189

DOI PMID

29
Loenarz C, Coleman M L, Boleininger A, Schierwater B, Holland P W, Ratcliffe P J, Schofield C J (2011). The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep, 12(1): 63-70

DOI PMID

30
Luo M, Sun L, Hu J (2009). Neural detection of gases—carbon dioxide, oxygen—in vertebrates and invertebrates. Curr Opin Neurobiol, 19(4): 354-361

DOI PMID

31
Ma D K, Vozdek R, Bhatla N, Horvitz H R (2012). CYSL-1 Interacts with the O2-sensing Hydroxylase EGL-9 to Promote H2S-modulated Hypoxia-induced behavioral plasticity in C. elegans. Neuron, 73(5): 925-940

DOI

32
Maina J N (1998). The Gas Exchangers: Structure, Function, and Evolution of the Respiratory Processes. Berlin: Springer

33
McGrath P T, Rockman M V, Zimmer M, Jang H, Macosko E Z, Kruglyak L, Bargmann C I (2009). Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron, 61(5): 692-699

DOI PMID

34
Morton D B (2004). Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors. J Biol Chem, 279(49): 50651-50653

DOI PMID

35
Morton D B (2011). Behavioral responses to hypoxia and hyperoxia in Drosophila larvae: molecular and neuronal sensors. Fly (Austin), 5(2): 119-125

PMID

36
Olson K R (2011a). Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol, 179(2-3): 103-110

DOI PMID

37
Olson K R (2011b). The therapeutic potential of hydrogen sulfide: separating hype from hope. Am J Physiol Regul Integr Comp Physiol, 301(20): R297-R312

DOI PMID

38
Olson K R, Dombkowski R A, Russell M J, Doellman M M, Head S K, Whitfield N L, Madden J A (2006). Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol, 209(Pt 20): 4011-4023

DOI PMID

39
Olson K R, Whitfield N L (2010). Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal, 12(10): 1219-1234

DOI PMID

40
Padilla P A, Nystul T G, Zager R A, Johnson A C, Roth M B (2002). Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. Mol Biol Cell, 13(5): 1473-1483

DOI PMID

41
Papp L A, Klein D F, Gorman J M (1993). Carbon dioxide hypersensitivity, hyperventilation, and panic disorder. Am J Psychiatry, 150(8): 1149-1157

PMID

42
Peng Y J, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla M M, Kumar G K, Snyder S H, Prabhakar N R (2010). H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA, 107(23): 10719-10724

DOI PMID

43
Persson A, Gross E, Laurent P, Busch K E, Bretes H, de Bono M (2009). Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature, 458(7241): 1030-1033

DOI PMID

44
Pocock R, Hobert O (2010). Hypoxia activates a latent circuit for processing gustatory information in C. elegans. Nat Neurosci, 13(5): 610-614

DOI PMID

45
Potter L R (2011). Guanylyl cyclase structure, function and regulation. Cell Signal, 23(12): 1921-1926

DOI PMID

46
Powell-Coffman J A (2010). Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab, 21(7): 435-440

DOI PMID

47
Prabhakar N R (2005). O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol, 91(1): 17-23

DOI PMID

48
Quaegebeur A, Carmeliet P (2010). Oxygen sensing: a common crossroad in cancer and neurodegeneration. Curr Top Microbiol Immunol, 345: 71-103

DOI PMID

49
Ray R S, Corcoran A E, Brust R D, Kim J C, Richerson G B, Nattie E, Dymecki S M (2011). Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science, 333(6042): 637-642

DOI PMID

50
Richerson G B (2004). Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci, 5(6): 449-461

DOI PMID

51
Scott K (2011). Out of thin air: sensory detection of oxygen and carbon dioxide. Neuron, 69(2): 194-202

DOI PMID

52
Semenza G L (2011a). Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta, 1813(7): 1263-1268

DOI PMID

53
Semenza G L (2011b). Oxygen sensing, homeostasis, and disease. N Engl J Med, 365(6): 537-547

DOI PMID

54
Singh S, Padovani D, Leslie R A, Chiku T, Banerjee R (2009). Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem, 284(33): 22457-22466

DOI PMID

55
Spyer K M (2009). To breathe or not to breathe? That is the question. Exp Physiol, 94(1): 1-10

DOI PMID

56
Suh G S, Wong A M, Hergarden A C, Wang J W, Simon A F, Benzer S, Axel R, Anderson D J (2004). A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature, 431(7010): 854-859

DOI PMID

57
Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009). Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA, 106(6): 2041-2046

DOI PMID

58
Teppema L J, Dahan A (2010). The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev, 90(2): 675-754

DOI PMID

59
Vermehren-Schmaedick A, Ainsley J A, Johnson W A, Davies S A, Morton D B (2010). Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics, 186(1): 183-196

DOI PMID

60
Vozdek R, Hnizda A, Krijt J, Kostrouchova M, Kozich V (2012). Novel structural arrangement of nematode cystathionine beta-synthases: characterization of Caenorhabditis elegans CBS-1. Biochem J, Available online 13 Jan 2012

61
Ward J P (2008). Oxygen sensors in context. Biochim Biophys Acta, 1777(1): 1-14

DOI PMID

62
Yu S, Avery L, Baude E, Garbers D L (1997). Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci USA, 94(7): 3384-3387

DOI PMID

63
Ziemann A E, Allen J E, Dahdaleh N S, Drebot I I, Coryell M W, Wunsch A M, Lynch C M, Faraci F M, Howard M A 3rd, Welsh M J, Wemmie J A (2009). The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell, 139(5): 1012-1021

DOI PMID

64
ZimmerM, GrayJ M, PokalaN, ChangA J, KarowD S, MarlettaM A, HudsonM L, MortonD B, ChronisN, BargmannC I(2009). Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron, 61(6): 865-879

DOI PMID

Outlines

/