Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar
Received date: 08 Sep 2011
Accepted date: 09 Nov 2011
Published date: 01 Apr 2012
Copyright
Enterococcus faecalis and Enterococcus faecium are both human intestinal colonizers frequently used in medical bacteriology teaching laboratories in order to train students in bacterial identification. In addition, hospitals within the United States and around the world commonly isolate these bacteria because they are a cause of bacteremia, urinary tract infections, endocarditis, wound infections, and nosocomial infections. Given that enterococci are becoming more of a world health hazard, it is important for laboratories to be able to distinguish these bacteria within hospitalized patients from other bacterial genera. In addition, laboratories must differentiate different species within the Enterococcus genus as well as different strains within each species. Though enterococci are differentiated from other bacterial genera via classical culture and biochemical methods, nucleic acid sequencing is required to differentiate species within the genus—a costly, time consuming, and technically challenging procedure for laboratory technicians that, in itself, does not necessarily lead to speedy identification of bactericidal antibiotics. In this study, we perform antibiogram analysis to show (1) that penicillin can be rapidly employed to distinguish strains and clinical isolates of E. faecalis from E. faecium, (2) E. faecalis is susceptible to ampicillin, and (3) that vancomycin resistance in enterococci shows no sign of abating. Additionally, we show that E. faecalis can grow on mannitol salt agar and ferment mannitol, while E. faecium lacks these phenotypes. These data reveal that we now have rapid, cost effective ways to identify enterococci to the species, and not just genus, level and have significance for patient treatment in hospitals.
Key words: enterococci; Staphylococcus; antibiotic resistance; bacteriology; microbiology
Maria L. G. Quiloan , John Vu , John Carvalho . Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar[J]. Frontiers in Biology, 2012 , 7(2) : 167 -177 . DOI: 10.1007/s11515-012-1183-5
1 |
Andersson D I (2003). Persistence of antibiotic resistant bacteria. Curr Opin Microbiol, 6(5): 452-456
|
2 |
Archibald L K, Reller L B (2001). Clinical microbiology in developing countries. Emerg Infect Dis, 7(2): 302-305
|
3 |
Blair E B, Emerson J S, Tull A H (1967). A new medium, salt mannitol plasma agar, for the isolation of Staphylococcus aureus. Am J Clin Pathol, 47(1): 30-39
|
4 |
Boe L, Gerdes K, Molin S (1987). Effects of genes exerting growth inhibition and plasmid stability on plasmid maintenance. J Bacteriol, 169(10): 4646-4650
|
5 |
Caldwell B A, Ye C, Griffiths R P, Moyer C L, Morita R Y (1989). Plasmid expression and maintanence during long-term starvation-survival of bacteria in well water. J Environ Microbiol, 55: 1860-1864
|
6 |
Carvalho J (2011). Importance of clinical microbiologists for U.S. healthcare infrastructure. Clin Lab Sci, 24(3): 136-141
|
7 |
Cetinkaya Y, Falk P, Mayhall C G (2000). Vancomycin-resistant enterococci. Clin Microbiol Rev, 13(4): 686-707
|
8 |
Chan E D, Iseman M D (2008). Multidrug-resistant and extensively drug-resistant tuberculosis: a review. Curr Opin Infect Dis, 21(6): 587-595
|
9 |
Clark N C, Cooksey R C, Hill B C, Swenson J M, Tenover F C (1993). Characterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob Agents Chemother, 37(11): 2311-2317
|
10 |
Courvalin P (2006). Vancomycin resistance in gram-positive cocci. Clin Infect Dis, 42(Suppl 1): S25-S34
|
11 |
Devriese L, Baele M, Butaye P (2006). The Genus Enterococcus. The Procaryotes. New York: Springer, 163-174
|
12 |
Domig K J, Mayer H K, Kneifel W (2003). Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp. 2. Pheno- and genotypic criteria. Int J Food Microbiol, 88(2-3): 165-188
|
13 |
Elzinga G, Raviglione M C, Maher D (2004). Scale up: meeting targets in global tuberculosis control. Lancet, 363(9411): 814-819
|
14 |
Emori T G, Gaynes R P (1993). An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev, 6(4): 428-442
|
15 |
Farmer P (2005). Pathologies of Power: Health, Human Rights, and the New War on the Poor. Berkley: University of California Press
|
16 |
Fisher K, Phillips C (2009). The ecology, epidemiology and virulence of Enterococcus. Microbiology, 155(6): 1749-1757
|
17 |
Flint S J, Enquest L W, Krug R M, Racaniello V R, Skalka A M (2000). Principles of Virology: Molecular Biology, Pathogenesis, and Control, Washington D C: ASM Press
|
18 |
Forbes B A, Sahm D F, Weissfeld A S (2007). Laboratory methods and strategies for antimicrobial susceptibility testing (12th Ed), St. Louis: Mosby Elsevier, 188-189
|
19 |
Gerdes K, Rasmussen P B, Molin S (1986). Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci USA, 83(10): 3116-3120
|
20 |
Godwin D, Slater J H (1979). The influence of the growth environment on the stability of a drug resistance plasmid in Escherichia coli K12. J Gen Microbiol, 111(1): 201-210
|
21 |
Guerrier-Takada C, Salavati R, Altman S (1997). Phenotypic conversion of drug-resistant bacteria to drug sensitivity. Proc Natl Acad Sci USA, 94(16): 8468-8472
|
22 |
Harrison L (2007). StaphylococciTextbook of Diagnostic Microbiology (3rd Ed), St. Louis, MO: Saunders-Elsevier, 377-379
|
23 |
Huycke M M, Sahm D F, Gilmore M S (1998). Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis, 4(2): 239-249
|
24 |
Jorgensen J H, Turnridge J D (2007). Susceptibility Test Methods: Dilution and Disk Diffusion Methods. Manual of Clinical Microbiology 9th Edition,Washington D C: ASM Press, 1152-1159
|
25 |
Kateete D P, Kimani C N, Katabazi F A, Okeng A, Okee M S, Nanteza A, Joloba M L, Najjuka F C (2010). Identification of Staphylococcus aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Ann Clin Microbiol Antimicrob, 9(1): 23
|
26 |
Kües U, Stahl U (1989). Replication of plasmids in gram-negative bacteria. Microbiol Rev, 53(4): 491-516
|
27 |
Leboffe M J, Pierce B E (2005). A Photographic Atlas for the Microbiology Laboratory (3rd Ed), Englewood, CO: Morton Publishing Company, 18-19
|
28 |
Lehman D C, Mahon C R, Swarna K (2007). Streptococcus, Enterococcus, and other catalase-negative gram-positive cocci. Textbook of Diagnostic Microbiology (3rd Ed), St Louis, MO: Saunders-Elsevier, 382-409
|
29 |
Lenski R E, Bouma J E (1987). Effects of segregation and selection on instability of plasmid pACYC184 in Escherichia coli B. J Bacteriol, 169(11): 5314-5316
|
30 |
Lightfoot N F, Scot R J D, Turnball P C B (1990). Antimicrobial susceptibility of Bacillus anthracis. Salisbury Med Bull, 68(Suppl): 95-98
|
31 |
Megran D W (1992). Enterococcal endocarditis. Clin Infect Dis, 15(1): 63-71
|
32 |
Modi R I, Adams J (1991). Coevolution in bacterial-plasmid populations. Evolution, 45(3): 656-667
|
33 |
Moellering R C Jr (1992). Emergence of Enterococcus as a significant pathogen. Clin Infect Dis, 14(6): 1173-1178
|
34 |
Murray P R, Rosenthal K S, Pfaller M A (2009). Enterococcus and other gram-positive cocci. Medical Microbiology (6th Ed), Philadelphia: Mosby Elsevie243-246
|
35 |
Noble W C, Virani Z, Cree R G (1992). Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett, 93(2): 195-198
|
36 |
Pang T, Peeling R W (2007). Diagnostic tests for infectious diseases in the developing world: two sides of the coin. Trans R Soc Trop Med Hyg, 101(9): 856-857
|
37 |
Rhee J I, Ricci J C D, Bode J, Schugerl K (1994). Metabolic enhancement due to plasmid maintenance. Biotechnol Lett, 16: 881-884
|
38 |
Rhode C (1995). Technical information sheet No. 12: plasmid isolation from bacteria: some fast procedures. World J Microbiol Biotechnol, 11(3): 367-369
|
39 |
Rice L B (2006). Antimicrobial resistance in gram-positive bacteria. Am J Med, 119(6 Suppl 1): S11-S19, discussion S62-S70
|
40 |
Seo J H, Bailey J E (1985). Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol Bioeng, 27(12): 1668-1674
|
41 |
Smith M A, Bidochka M J (1998). Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can J Microbiol, 44(4): 351-355
|
42 |
Stetler H C, Granade T C, Nunez C A, Meza R, Terrell S, Amador L, George J R (1997). Field evaluation of rapid HIV serologic tests for screening and confirming HIV-1 infection in Honduras. AIDS, 11(3): 369-375
|
43 |
Sung J M L, Lindsay J A (2007). Staphylococcus aureus strains that are hypersusceptible to resistance gene transfer from enterococci. Antimicrob Agents Chemother, 51(6): 2189-2191
|
44 |
Teixeira L M, Carvalho M G S, Shewmaker P L, Facklam R R (2011). Manual of Clinical Microbiology. Washington, D C: ASM Press, 350-364
|
45 |
Usdin M, Guillerm M, Calmy A (2010). Patient needs and point-of-care requirements for HIV load testing in resource-limited settings. J Infect Dis, 201(s1 Suppl 1): S73-S77
|
46 |
Valenzuela M S, Ikpeazu E V, Siddiqui K A (1996). E. coli growth inhibition by a high copy number derivative of plasmid pBR322. Biochem Biophys Res Commun, 219(3): 876-883
|
47 |
Vu J, Carvalho J (2011). Enterococcus: review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology. Front Biol, 6(5): 357-366
|
48 |
Wilkinson D, Wilkinson N, Lombard C, Martin D, Smith A, Floyd K, Ballard R (1997). On-site HIV testing in resource-poor settings: is one rapid test enough? AIDS, 11(3): 377-381
|
49 |
Woodford N, Johnson A P, Morrison D, Speller D C (1995). Current perspectives on glycopeptide resistance. Clin Microbiol Rev, 8(4): 585-615
|
50 |
Yamahara K M, Layton B A, Santoro A E, Boehm A B (2007). Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters. Environ Sci Technol, 41(13): 4515-4521
|
/
〈 | 〉 |