REVIEW

Application of microarray technology in Drosophila ethanol behavioral research

  • Awoyemi A. AWOFALA , 1,2
Expand
  • 1. School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
  • 2. Department of Biological Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria

Received date: 05 Sep 2011

Accepted date: 10 Oct 2011

Published date: 01 Feb 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Gene expression profiling of Drosophila melanogaster, an invertebrate model organism, applied to DNA microarray promises to provide novel insights into the important pathways and molecules that may contribute to the risk of alcohol abuse and addiction. Instead of studying one gene at a time, the technology provides a snapshot of transcriptional changes at once, and offers unprecedented opportunities to understand the molecular complexity of alcohol-seeking behavior including addiction and dependence.

Cite this article

Awoyemi A. AWOFALA . Application of microarray technology in Drosophila ethanol behavioral research[J]. Frontiers in Biology, 2012 , 7(1) : 65 -72 . DOI: 10.1007/s11515-011-1177-8

Acknowledgments

This work was supported by a fellowship from Tai Solarin University of Education. The content is solely the responsibility of the author and does not necessarily reflect the official view of the funding institution.
1
Affymetrix (2001a) Affymetrix Microarray Suite Users Guide, Affymetrix, Santa Clara, CA, version 5.0 edition

2
Affymetrix (2001b) Statistical Algorithms Reference Guide. Technical report, Affymetrix, Santa Clara, CA

3
Al-Shahrour F, Díaz-Uriarte R, Dopazo J (2004). FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics, 20(4): 578–580

DOI PMID

4
Allison D B, Cui X, Page G P, Sabripour M (2006). Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet, 7(1): 55–65

DOI PMID

5
Awofala A A (2011a). Acute Ethanol Regulation of Gene Expression Systems in Drosophila: A Computational and Behavioral Genetic Approach to Alcohol Addiction. Lambert Academic Publisher (LAP): Germany.

6
Awofala A A (2011b). Genetic approaches to alcohol addiction: gene expression studies and recent candidates from Drosophila. Invert Neurosci, 11(1): 1–7

DOI PMID

7
Awofala A A, Jones S, Davies J A (2011). The heat shock protein 26 gene is required for ethanol tolerance in Drosophila. J Exp Neurosci, 5: 31–44

DOI

8
Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to mMultiple testing. J Roy Stat Soc B Met, 57: 289–300

9
Berger K H, Kong E C, Dubnau J, Tully T, Moore M S, Heberlein U (2008). Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcohol Clin Exp Res, 32(5): 895–908

DOI PMID

10
Bolstad B M, Irizarry R A, Astrand M, Speed T P (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2): 185–193

DOI PMID

11
Bussey K J, Kane D, Sunshine M, Narasimhan S, Nishizuka S, Reinhold W C, Zeeberg B, Ajay W, Weinstein J N (2003). MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biol, 4(4): R27

DOI PMID

12
Cui X, Churchill G A (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome Biol, 4(4): 210

DOI PMID

13
Dennis G Jr, Sherman B T, Hosack D A, Yang J, Gao W, Lane H C, Lempicki R A (2003). DAVID: Database for annotation, visualisation, and integrated discovery. Genome Biol, 4(5): 3

DOI

14
Devineni A V, Heberlein U (2009). Preferential ethanol consumption in Drosophila models features of addiction. Curr Biol, 19(24): 2126–2132

DOI PMID

15
Doniger S W, Salomonis N, Dahlquist K D, Vranizan K, Lawlor S C, Conklin B R (2003). MAPPFinder: using gene ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol, 4(1): R7

DOI PMID

16
Dudoit S, Shaffer J P, Block J C (2003). Multiple hypothesis testing in microarray experiments. Stat Sci, 18(1): 71–103

DOI

17
Eisen M B, Brown P O (1999). DNA arrays for analysis of gene expression. Methods Enzymol, 303: 179–205

DOI PMID

18
Eisen M B, Spellman P T, Brown P O, Botstein D (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 95(25): 14863–14868

DOI PMID

19
Ernst J, Bar-Joseph Z (2006). STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 7(1): 191

DOI PMID

20
Golub T R, Slonim D K, Tamayo P, Huard C, Gaasenbeek M, Mesirov J P, Coller H, Loh M L, Downing J R, Caligiuri M A, Bloomfield C D, Lander E S (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439): 531–537

DOI PMID

21
Huber W, Irizarry R, Gentlemen R (2005). Preprocessing overview. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor, pages 3-12 and 431-442. eds. Gentlemen, R., Carey, V., Huber, W., Irizarry, R. and Dudoit, S. Springer: New York

22
Irizarry R A, Bolstad B M, Collin F, Cope L M, Hobbs B, Speed T P (2003a). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res, 31(4): 15e

DOI PMID

23
Irizarry R A, Hobbs B G, Collin F, Beazer-Barclay Y D, Antonellis K J, Scherf U, Speed T P (2003b). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2): 249–264

DOI PMID

24
Kaun K R, Azanchi R, Maung Z, Hirsh J, Heberlein U (2011). A Drosophila model for alcohol reward. Nat Neurosci, 14(5): 612–619

DOI PMID

25
Khan J, Wei J S, Ringnér M, Saal L H, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu C R, Peterson C, Meltzer P S (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med, 7(6): 673–679

DOI PMID

26
Kong E C, Allouche L, Chapot P A, Vranizan K, Moore M S, Heberlein U, Kong E C, Allouche L, Chapot P A, Vranizan K, Moore M S, Heberlein U, Wolf F W (2010). Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila. Alcohol Clin Exp Res, 34(2): 302–316

DOI PMID

27
Lee M L, Kuo F C, Whitmore G A, Sklar J (2000). Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad SciβUSA,β97:β9834–9839

28
Li C, Wong W H (2001). Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA, 98(1): 31–36

DOI PMID

29
Marioni J C, Mason C E, Mane S M, Stephens M, Gilad Y (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 18(9): 1509–1517

DOI PMID

30
Millenaar F F, Okyere J, May S T, van Zanten M, Voesenek L A, Peeters A J (2006). How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results. BMC Bioinformatics, 7(1): 137

DOI PMID

31
Miller R A, Galecki A, Shmookler-Reis R J (2001). Interpretation, design, and analysis of gene array expression experiments. J Gerontol A Biol Sci Med Sci, 56(2): B52–B57

DOI PMID

32
Moore M S, DeZazzo J, Luk A Y, Tully T, Singh C M, Heberlein U (1998). Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell, 93(6): 997–1007

DOI PMID

33
Morozova T V, Anholt R R, Mackay T F (2006). Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biol, 7(10): R95

DOI PMID

34
Morozova T V, Anholt R R, Mackay T F (2007). Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster. Genome Biol, 8(10): R231

DOI PMID

35
Nadon R, Shoemaker J (2002). Statistical issues with microarrays: processing and analysis. Trends Genet, 18(5): 265–271

DOI PMID

36
Olson N E (2006). The microarray data analysis process: from raw data to biological significance. NeuroRx, 3(3): 373–383

DOI PMID

37
Qin L X, Beyer R P, Hudson F N, Linford N J, Morris D E, Kerr K F (2006). Evaluation of methods for oligonucleotide array data via quantitative real-time PCR. BMC Bioinformatics, 7(1): 23

DOI PMID

38
Reiner A, Yekutieli D, Benjamini Y (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics, 19(3): 368–375

DOI PMID

39
Scholz H, Franz M, Heberlein U (2005). The hangover gene defines a stress pathway required for ethanol tolerance development. Nature, 436(7052): 845–847

DOI PMID

40
Shi L, Reid L H, Jones W D, Shippy R, Warrington J A, Baker S C, Collins P J, de Longueville F, Kawasaki E S, Lee K Y, Luo Y, Sun Y A, Willey J C, Setterquist R A, Fischer G M, Tong W, Dragan Y P, Dix D J, Frueh F W, Goodsaid F M, Herman D, Jensen R V, Johnson C D, Lobenhofer E K, Puri R K, Schrf U, Thierry-Mieg J, Wang C, Wilson M, Wolber P K, Zhang L, Amur S, Bao W, Barbacioru C C, Lucas A B, Bertholet V, Boysen C, Bromley B, Brown D, Brunner A, Canales R, Cao X M, Cebula T A, Chen J J, Cheng J, Chu T M, Chudin E, Corson J, Corton J C, Croner L J, Davies C, Davison T S, Delenstarr G, Deng X, Dorris D, Eklund A C, Fan X H, Fang H, Fulmer-Smentek S, Fuscoe J C, Gallagher K, Ge W, Guo L, Guo X, Hager J, Haje P K, Han J, Han T, Harbottle H C, Harris S C, Hatchwell E, Hauser C A, Hester S, Hong H, Hurban P, Jackson S A, Ji H, Knight C R, Kuo W P, LeClerc J E, Levy S, Li Q Z, Liu C, Liu Y, Lombardi M J, Ma Y, Magnuson S R, Maqsodi B, McDaniel T, Mei N, Myklebost O, Ning B, Novoradovskaya N, Orr M S, Osborn T W, Papallo A, Patterson T A, Perkins R G, Peters E H, Peterson R, Philips K L, Pine P S, Pusztai L, Qian F, Ren H, Rosen M, Rosenzweig B A, Samaha R R, Schena M, Schroth G P, Shchegrova S, Smith D D, Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z, Thierry-Mieg D, Thompson K L, Tikhonova I, Turpaz Y, Vallanat B, Van C, Walker S J, Wang S J, Wang Y, Wolfinger R, Wong A, Wu J, Xiao C, Xie Q, Xu J, Yang W, Zhang L, Zhong S, Zong Y, Slikker W Jr, MAQC Consortium (2006). The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol, 24(9): 1151–1161

DOI PMID

41
Singh C M, Heberlein U (2000). Genetic control of acute ethanol-induced behaviors in Drosophila. Alcohol Clin Exp Res, 24(8): 1127–1136

DOI PMID

42
Slonim D K, Yanai I (2009). Getting started in gene expression microarray analysis. PLOS Comput Biol, 5(10): e1000543

DOI PMID

43
Stekel D (2003). Microarray Bioinformatics. Cambridge University Press: Cambridge

44
Su A l, Welsh J B, Sapinoso L M, Kern S G, Dimitrov P, Lapp H (2001). Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res, 61:7388–93

45
Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander E S, Golub T R (1999). Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA, 96(6): 2907–2912

DOI PMID

46
Tavazoie S, Hughes J D, Campbell M J, Cho R J, Church G M (1999). Systematic determination of genetic network architecture. Nat Genet, 22(3): 281–285

DOI PMID

47
Verhaak R G, Staal F J, Valk P J, Lowenberg B, Reinders M J, de Ridder D (2006). The effect of oligonucleotide microarray data pre-processing on the analysis of patient-cohort studies. BMC Bioinformatics, 7(1): 105

DOI PMID

48
Wand G, Levine M, Zweifel L, Schwindinger W, Abel T (2001). The cAMP-protein kinase a signal transduction pathway modulates ethanol consumption and sedative effects of ethanol. J Neurosci,21: 5297–5303

49
Wang Z, Gerstein M, Snyder M (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1): 57–63

DOI PMID

50
Wu Z, Irizarry A R, Gentleman R, Martinez-Murillo F, Spencer F (2004). A model-based background adjustment for oligonucleotide expression arrays. JASA, 99: 909–917

51
Wu Z, Irizarry R A (2004). Preprocessing of oligonucleotide array data. Nat Biotechnol, 22(6): 656–658, author reply 658

DOI PMID

52
Yamamoto M, Pohli S, Durany N, Ozawa H, Saito T, Boissl K W, Zöchling R, Riederer P, Böning J, Götz, M E (2001). Increased levels of calcium-sensitive adenylyl cyclase subtypes in the limbic system of alcoholics: evidence for a specific role of cAMP signaling in the human addictive brain. Brain Res, 895: 233–237

53
Zeeberg B R, Feng W, Wang G, Wang M D, Fojo A T, Sunshine M, Narasimhan S, Kane D W, Reinhold W C, Lababidi S, Bussey K J, Riss J, Barrett J C, Weinstein J N (2003). GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol, 4(4): R28

DOI PMID

Outlines

/