REVIEW

Signal integration in the (m)TORC1 growth pathway

  • Kailash Ramlaul ,
  • Christopher H. S. Aylett
Expand
  • Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK

Received date: 04 May 2018

Accepted date: 05 Jun 2018

Published date: 10 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

BACKGROUND: The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell’s biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes.

METHODOLOGY: Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration.

CONCLUSIONS: A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.

Cite this article

Kailash Ramlaul , Christopher H. S. Aylett . Signal integration in the (m)TORC1 growth pathway[J]. Frontiers in Biology, 2018 , 13(4) : 237 -262 . DOI: 10.1007/s11515-018-1501-7

Acknowledgments

This work was supported by the Wellcome Trust and the Royal Society through a Sir Henry Dale Fellowship (206212/Z/17/Z) to CHSA.

Compliance with ethics guidelines

Kailash Ramlaul and Christopher H. S. Aylett declare that they have no conflict of interest.
Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11515-018-1501-7 and is accessible for authorized users.
1
Algret R, Fernandez-Martinez J, Shi Y, Kim S J, Pellarin R, Cimermancic P, Cochet E, Sali A, Chait B T, Rout M P, Dokudovskaya S (2014). Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol Cell Proteomics, 13(11): 2855–2870

DOI PMID

2
Aylett C H S, Sauer E, Imseng S, Boehringer D, Hall M N, Ban N, Maier T (2016). Architecture of human mTOR complex 1. Science, 351(6268): 48–52

DOI PMID

3
Baba M, Hong S B, Sharma N, Warren M B, Nickerson M L, Iwamatsu A, Esposito D, Gillette W K, Hopkins R F3rd, Hartley J L, Furihata M, Oishi S, Zhen W, Burke T RJr, Linehan W M, Schmidt L S, Zbar B (2006). Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA, 103(42): 15552–15557

DOI PMID

4
Baldassari S, Licchetta L, Tinuper P, Bisulli F, Pippucci T (2016). GATOR1 complex: the common genetic actor in focal epilepsies. J Med Genet, 53(8): 503–510

DOI PMID

5
Balderhaar H J, Ungermann C (2013). CORVET and HOPS tethering complexes- coordinators of endosome and lysosome fusion. J Cell Sci, 126(Pt 6): 1307–1316

DOI PMID

6
Baple E L, Maroofian R, Chioza B A, Izadi M, Cross H E, Al-Turki S, Barwick K, Skrzypiec A, Pawlak R, Wagner K, Coblentz R, Zainy T, Patton M A, Mansour S, Rich P, Qualmann B, Hurles M E, Kessels M M, Crosby A H (2014). Mutations in KPTN cause macrocephaly, neurodevelopmental delay, and seizures. Am J Hum Genet, 94(1): 87–94

DOI PMID

7
Bar-Peled L, Chantranupong L, Cherniack A D, Chen W W, Ottina K A, Grabiner B C, Spear E D, Carter S L, Meyerson M, Sabatini D M (2013). A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science, 340(6136): 1100–1106

DOI PMID

8
Bar-Peled L, Schweitzer L D, Zoncu R, Sabatini D M (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6): 1196–1208

DOI PMID

9
Baretić D, Berndt A, Ohashi Y, Johnson C M, Williams R L (2016). Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nat Commun, 7: 11016

DOI PMID

10
Basel-Vanagaite L, Hershkovitz T, Heyman E, Raspall-Chaure M, Kakar N, Smirin-Yosef P, Vila-Pueyo M, Kornreich L, Thiele H, Bode H, Lagovsky I, Dahary D, Haviv A, Hubshman M W, Pasmanik-Chor M, Nürnberg P, Gothelf D, Kubisch C, Shohat M, Macaya A, Borck G (2013). Biallelic SZT2 mutations cause infantile encephalopathy with epilepsy and dysmorphic corpus callosum. Am J Hum Genet, 93(3): 524–529

DOI PMID

11
Baulac S (2016). mTOR signaling pathway genes in focal epilepsies. Prog Brain Res, 226: 61–79

DOI PMID

12
Bharucha N, Liu Y, Papanikou E, McMahon C, Esaki M, Jeffrey P D, Hughson F M, Glick B S (2013). Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol Biol Cell, 24(21): 3406–3419

DOI PMID

13
Blommaart E F, Luiken J J, Blommaart P J, van Woerkom G M, Meijer A J (1995). Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem, 270(5): 2320–2326

DOI PMID

14
Bosotti R, Isacchi A, Sonnhammer E L (2000). FAT: a novel domain in PIK-related kinases. Trends Biochem Sci, 25(5): 225–227

DOI PMID

15
Brohawn S G, Leksa N C, Spear E D, Rajashankar K R, Schwartz T U (2008). Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science, 322(5906): 1369–1373

DOI PMID

16
Brohawn S G, Schwartz T U (2009). Molecular architecture of the Nup84-Nup145C-Sec13 edge element in the nuclear pore complex lattice. Nat Struct Mol Biol, 16(11): 1173–1177

DOI PMID

17
Brown E J, Albers M W, Shin T B, Ichikawa K, Keith C T, Lane W S, Schreiber S L (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature, 369(6483): 756–758

DOI PMID

18
Brugarolas J, Lei K, Hurley R L, Manning B D, Reiling J H, Hafen E, Witters L A, Ellisen L W, Kaelin W GJr (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev, 18(23): 2893–2904

DOI PMID

19
Budanov A V, Karin M (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 134(3): 451–460

DOI PMID

20
Budanov A V, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, Gorodin S, Fishman A, Chajut A, Einat P, Skaliter R, Gudkov A V, Chumakov P M, Feinstein E (2002). Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene, 21(39): 6017–6031

DOI PMID

21
Buerger C, DeVries B, Stambolic V (2006). Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun, 344(3): 869–880

DOI PMID

22
Bun-Ya M, Harashima S, Oshima Y (1992). Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol, 12(7): 2958–2966

DOI PMID

23
Burnett P E, Barrow R K, Cohen N A, Snyder S H, Sabatini D M (1998). RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA, 95(4): 1432–1437

DOI PMID

24
Cai S L, Tee A R, Short J D, Bergeron J M, Kim J, Shen J, Guo R, Johnson C L, Kiguchi K, Walker C L (2006). Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol, 173(2): 279–289

DOI PMID

25
Castellano B M, Thelen A M, Moldavski O, Feltes M, van der Welle R E N, Mydock-McGrane L, Jiang X, van Eijkeren R J, Davis O B, Louie S M, Perera R M, Covey D F, Nomura D K, Ory D S, Zoncu R (2017). Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science, 355(6331): 1306–1311

DOI PMID

26
Castro A F, Rebhun J F, Clark G J, Quilliam L A (2003). Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem, 278(35): 32493–32496

DOI PMID

27
Chantranupong L, Scaria S M, Saxton R A, Gygi M P, Shen K, Wyant G A, Wang T, Harper J W, Gygi S P, Sabatini D M (2016). The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell, 165(1): 153–164

DOI PMID

28
Chantranupong L, Wolfson R L, Orozco J M, Saxton R A, Scaria S M, Bar-Peled L, Spooner E, Isasa M, Gygi S P, Sabatini D M (2014). The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Reports, 9(1): 1–8

DOI PMID

29
Chen E J, Kaiser C A (2003). LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol, 161(2): 333–347

DOI PMID

30
Chen J, Zheng X F, Brown E J, Schreiber S L (1995). Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA, 92(11): 4947–4951

DOI PMID

31
Cherfils J (2017). Encoding Allostery in mTOR Signaling: The Structure of the Rag GTPase/Ragulator Complex. Mol Cell, 68(5): 823–824

DOI PMID

32
Chiu M I, Katz H, Berlin V (1994). RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA, 91(26): 12574–12578

DOI PMID

33
Clark G J, Kinch M S, Rogers-Graham K, Sebti S M, Hamilton A D, Der C J (1997). The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J Biol Chem, 272(16): 10608–10615

DOI PMID

34
Cui Q, Sulea T, Schrag J D, Munger C, Hung M N, Naïm M, Cygler M, Purisima E O (2008). Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex. J Mol Biol, 379(4): 787–802

DOI PMID

35
Daste F, Galli T, Tareste D (2015). Structure and function of longin SNAREs. J Cell Sci, 128(23): 4263–4272

DOI PMID

36
de Araujo M E G, Naschberger A, Fürnrohr B G, Stasyk T, Dunzendorfer-Matt T, Lechner S, Welti S, Kremser L, Shivalingaiah G, Offterdinger M, Lindner H H, Huber L A, Scheffzek K (2017). Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science, 358(6361): 377–381

DOI PMID

37
De Franceschi N, Wild K, Schlacht A, Dacks J B, Sinning I, Filippini F (2014). Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery. Traffic, 15(1): 104–121

DOI PMID

38
Debler E W, Ma Y, Seo H S, Hsia K C, Noriega T R, Blobel G, Hoelz A (2008). A fence-like coat for the nuclear pore membrane. Mol Cell, 32(6): 815–826

DOI PMID

39
Demetriades C, Plescher M, Teleman A A (2016). Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun, 7: 10662

DOI PMID

40
Deng Y, Qin Y, Srikantan S, Luo A, Cheng Z M, Flores S K, Vogel K S, Wang E, Dahia P L M (2018). The TMEM127 human tumor suppressor is a component of the mTORC1 lysosomal nutrient-sensing complex. Hum Mol Genet, 27(10): 1794–1808

DOI PMID

41
DeYoung M P, Horak P, Sofer A, Sgroi D, Ellisen L W (2008). Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev, 22(2): 239–251

DOI PMID

42
Dibble C C, Elis W, Menon S, Qin W, Klekota J, Asara J M, Finan P M, Kwiatkowski D J, Murphy L O, Manning B D (2012). TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell, 47(4): 535–546

DOI PMID

43
Dodding M P (2017). Folliculin- A tumor suppressor at the intersection of metabolic signaling and membrane traffic. Small GTPases, 8(2): 100–105

DOI PMID

44
Dokudovskaya S, Waharte F, Schlessinger A, Pieper U, Devos D P, Cristea I M, Williams R, Salamero J, Chait B T, Sali A, Field M C, Rout M P, Dargemont C(2011). A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol. Cell Proteomics 10, M110.006478. doi:10.1074/mcp.M110.006478

45
Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell, 19(1): 15–26

DOI PMID

46
Durán R V, Hall M N (2012). Regulation of TOR by small GTPases. EMBO Rep, 13(2): 121–128

DOI PMID

47
Faini M, Beck R, Wieland F T, Briggs J A G (2013). Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol, 23(6): 279–288

DOI PMID

48
Fath S, Mancias J D, Bi X, Goldberg J (2007). Structure and organization of coat proteins in the COPII cage. Cell, 129(7): 1325–1336

DOI PMID

49
Fawal M A, Brandt M, Djouder N (2015). MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell, 33(1): 67–81

DOI PMID

50
Filipek P A, de Araujo M E G, Vogel G F, De Smet C H, Eberharter D, Rebsamen M, Rudashevskaya E L, Kremser L, Yordanov T, Tschaikner P, Fürnrohr B G, Lechner S, Dunzendorfer-Matt T, Scheffzek K, Bennett K L, Superti-Furga G, Lindner H H, Stasyk T, Huber L A (2017). LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late endosomal positioning. J Cell Biol, 216(12): 4199–4215

DOI PMID

51
Fischer B, Lüthy K, Paesmans J, De Koninck C, Maes I, Swerts J, Kuenen S, Uytterhoeven V, Verstreken P, Versées W (2016). Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nat Struct Mol Biol, 23(11): 965–973

DOI PMID

52
Frankel W N, Yang Y, Mahaffey C L, Beyer B J, O’Brien T P (2009). Szt2, a novel gene for seizure threshold in mice. Genes Brain Behav, 8(5): 568–576

DOI PMID

53
Fryer A E, Chalmers A, Connor J M, Fraser I, Povey S, Yates A D, Yates J R, Osborne J P (1987). Evidence that the gene for tuberous sclerosis is on chromosome 9. Lancet, 1(8534): 659–661

DOI PMID

54
Fukuda M (2011). TBC proteins: GAPs for mammalian small GTPase Rab? Biosci Rep, 31(3): 159–168

DOI PMID

55
Gai Z, Chu W, Deng W, Li W, Li H, He A, Nellist M, Wu G (2016a). Structure of the TBC1D7-TSC1 complex reveals that TBC1D7 stabilizes dimerization of the TSC1 C-terminal coiled coil region. J Mol Cell Biol: mjw001 doi:10.1093/jmcb/mjw001

PMID

56
Gai Z, Wang Q, Yang C, Wang L, Deng W, Wu G (2016b). Structural mechanism for the arginine sensing and regulation of CASTOR1 in the mTORC1 signaling pathway. Cell Discov, 2(1): 16051

DOI PMID

57
Gao M, Kaiser C A (2006). A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol, 8(7): 657–667

DOI PMID

58
Gao X, Pan D (2001). TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev, 15(11): 1383–1392

DOI PMID

59
Garami A, Zwartkruis F J T, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma S C, Hafen E, Bos J L, Thomas G (2003). Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell, 11(6): 1457–1466

DOI PMID

60
Garcia-Saez I, Lacroix F B, Blot D, Gabel F, Skoufias D A (2011). Structural characterization of HBXIP: the protein that interacts with the anti-apoptotic protein survivin and the oncogenic viral protein HBx. J Mol Biol, 405(2): 331–340

DOI PMID

61
Gong R, Li L, Liu Y, Wang P, Yang H, Wang L, Cheng J, Guan K L, Xu Y (2011). Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev, 25(16): 1668–1673

DOI PMID

62
Grabacka M, Pierzchalska M, Dean M, Reiss K (2016). Regulation of ketone body metabolism and the role of ppara. Int J Mol Sci, 17(12): E2093

DOI PMID

63
Groenewoud M J, Zwartkruis F J T (2013). Rheb and Rags come together at the lysosome to activate mTORC1. Biochem Soc Trans, 41(4): 951–955

DOI PMID

64
Gu X, Orozco J M, Saxton R A, Condon K J, Liu G Y, Krawczyk P A, Scaria S M, Harper J W, Gygi S P, Sabatini D M (2017). SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science, 358(6364): 813–818

DOI PMID

65
Hanker A B, Mitin N, Wilder R S, Henske E P, Tamanoi F, Cox A D, Der C J (2010). Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene, 29(3): 380–391

DOI PMID

66
Hara K, Yonezawa K, Weng Q P, Kozlowski M T, Belham C, Avruch J (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem, 273(23): 14484–14494

DOI PMID

67
Hashimoto Y, Shirane M, Nakayama K I (2018). TMEM55B contributes to lysosomal homeostasis and amino acid-induced mTORC1 activation. Genes Cells,

DOI PMID

68
Hasumi H, Baba M, Hong S B, Hasumi Y, Huang Y, Yao M, Valera V A, Linehan W M, Schmidt L S (2008). Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene, 415(1-2): 60–67

DOI PMID

69
Heard J J, Fong V, Bathaie S Z, Tamanoi F (2014). Recent progress in the study of the Rheb family GTPases. Cell Signal, 26(9): 1950–1957

DOI PMID

70
Heitman J, Movva N R, Hall M N (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 253(5022): 905–909

DOI PMID

71
Helliwell S B, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall M N (1994). TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell, 5(1): 105–118

DOI PMID

72
Hoogeveen-Westerveld M, Exalto C, Maat-Kievit A, van den Ouweland A, Halley D, Nellist M (2010). Analysis of TSC1 truncations defines regions involved in TSC1 stability, aggregation and interaction. Biochim Biophys Acta, 1802(9): 774–781

DOI PMID

73
Hoogeveen-Westerveld M, van Unen L, van den Ouweland A, Halley D, Hoogeveen A, Nellist M (2012). The TSC1-TSC2 complex consists of multiple TSC1 and TSC2 subunits. BMC Biochem, 13(1): 18

DOI PMID

74
Hsia K C, Stavropoulos P, Blobel G, Hoelz A (2007). Architecture of a coat for the nuclear pore membrane. Cell, 131(7): 1313–1326

DOI PMID

75
Huang J, Manning B D (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J, 412(2): 179–190

DOI PMID

76
Huang J, Manning B D (2009). A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans, 37(Pt 1): 217–222

DOI PMID

77
Huttlin E L, Ting L, Bruckner R J, Gebreab F, Gygi M P, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K, Dong R, Guarani V, Vaites L P, Ordureau A, Rad R, Erickson B K, Wühr M, Chick J, Zhai B, Kolippakkam D, Mintseris J, Obar R A, Harris T, Artavanis-Tsakonas S, Sowa M E, De Camilli P, Paulo J A, Harper J W, Gygi S P (2015). The bioplex network: A systematic exploration of the human interactome. Cell, 162(2): 425–440

DOI PMID

78
Im E, von Lintig F C, Chen J, Zhuang S, Qui W, Chowdhury S, Worley P F, Boss G R, Pilz R B (2002). Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene, 21(41): 6356–6365

DOI PMID

79
Imseng S, Aylett C H, Maier T (2018). Architecture and activation of phosphatidylinositol 3-kinase related kinases. Curr Opin Struct Biol, 49: 177–189

DOI PMID

80
Inoki K, Li Y, Xu T, Guan K L (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev, 17(15): 1829–1834

DOI PMID

81
Inoki K, Li Y, Zhu T, Wu J, Guan K L (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol, 4(9): 648–657

DOI PMID

82
Jeong J H, Lee K H, Kim Y M, Kim D H, Oh B H, Kim Y G (2012). Crystal structure of the Gtr1p(GTP)-Gtr2p(GDP) protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion. J Biol Chem, 287(35): 29648–29653

DOI PMID

83
Jia R, Guardia C M, Pu J, Chen Y, Bonifacino J S (2017). BORC coordinates encounter and fusion of lysosomes with autophagosomes. Autophagy, 13(10): 1648–1663

DOI PMID

84
Jung J, Genau H M, Behrends C (2015). Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9. Mol Cell Biol, 35(14): 2479–2494

DOI PMID

85
Kandt R S, Haines J L, Smith M, Northrup H, Gardner R J, Shor t M P, Dumars K, Roach E S, Steingold S, Wall S, Blanton S H, Flodman P, Kwiatkowski D J, Jewell A, Weber J L, Roses A D, Pericak-Vanc e M A (1992). Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet, 2(1): 37–41

DOI PMID

86
Kelley K, Knockenhauer K E, Kabachinski G, Schwartz T U (2015). Atomic structure of the Y complex of the nuclear pore. Nat Struct Mol Biol, 22(5): 425–431

DOI PMID

87
Kennedy B K, Lamming D W (2016). The mechanistic target of rapamycin: the grand conductor of metabolism and aging. Cell Metab, 23(6): 990–1003

DOI PMID

88
Kim D H, Sarbassov D D, Ali S M, King J E, Latek R R, Erdjument-Bromage H, Tempst P, Sabatini D M (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2): 163–175

DOI PMID

89
Kim D H, Sarbassov D D, Ali S M, Latek R R, Guntur K V, Erdjument-Bromage H, Tempst P, Sabatini D M (2003). GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell, 11(4): 895–904

DOI PMID

90
Kim E, Goraksha-Hicks P, Li L, Neufeld T P, Guan K L (2008). Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol, 10(8): 935–945

DOI PMID

91
Kim H, An S, Ro S H, Teixeira F, Park G J, Kim C, Cho C S, Kim J S, Jakob U, Lee J H, Cho U S (2015). Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat Commun, 6(1): 10025

DOI PMID

92
Kim J S, Ro S H, Kim M, Park H W, Semple I A, Park H, Cho U S, Wang W, Guan K L, Karin M, Lee J H (2015). Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep, 5(1): 9502

DOI PMID

93
Kimball S R, Gordon B S, Moyer J E, Dennis M D, Jefferson L S (2016). Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal, 28(8): 896–906

DOI PMID

94
Kiontke S, Langemeyer L, Kuhlee A, Schuback S, Raunser S, Ungermann C, Kümmel D (2017). Architecture and mechanism of the late endosomal Rab7-like Ypt7 guanine nucleotide exchange factor complex Mon1-Ccz1. Nat Commun, 8: 14034

DOI PMID

95
Kogan K, Spear E D, Kaiser C A, Fass D (2010). Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. J Mol Biol, 402(2): 388–398

DOI PMID

96
Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva N R, Hall M N (1993). Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell, 73(3): 585–596

DOI PMID

97
Kurzbauer R, Teis D, de Araujo M E G, Maurer-Stroh S, Eisenhaber F, Bourenkov G P, Bartunik H D, Hekman M, Rapp U R, Huber L A, Clausen T (2004). Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc Natl Acad Sci USA, 101(30): 10984–10989

DOI PMID

98
Kwiatkowski D J (2003). Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther, 2(5): 471–476

DOI PMID

99
Laplante M, Sabatini D M (2012). mTOR signaling in growth control and disease. Cell, 149(2): 274–293

DOI PMID

100
Lee C, Goldberg J (2010). Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats. Cell, 142(1): 123–132

DOI PMID

101
Levine T P, Daniels R D, Wong L H, Gatta A T, Gerondopoulos A, Barr F A (2013). Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases, 4(2): 62–69

DOI PMID

102
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo J L, Bonenfant D, Oppliger W, Jenoe P, Hall M N (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 10(3): 457–468

DOI PMID

103
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005). Rheb binds and regulates the mTOR kinase. Curr Biol, 15(8): 702–713

DOI PMID

104
Lunin V V, Munger C, Wagner J, Ye Z, Cygler M, Sacher M (2004). The structure of the MAPK scaffold, MP1, bound to its partner, p14. A complex with a critical role in endosomal map kinase signaling. J Biol Chem, 279(22): 23422–23430

DOI PMID

105
Marshall C B, Ho J, Buerger C, Plevin M J, Li G Y, Li Z, Ikura M, Stambolic V (2009). Characterization of the intrinsic and TSC2-GAP-regulated GTPase activity of Rheb by real-time NMR. Sci Signal, 2(55): ra3

DOI PMID

106
Mazhab-Jafari M T, Marshall C B, Ishiyama N, Ho J, Di Palma V, Stambolic V, Ikura M (2012). An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Structure, 20(9): 1528–1539

DOI PMID

107
Mc Cormack A, Sharpe C, Gregersen N, Smith W, Hayes I, George A M, Love D R (2015). 12q14 Microdeletions: Additional Case Series with Confirmation of a Macrocephaly Region. Case Rep Genet, 2015: 192071

DOI PMID

108
Metzger M B, Hristova V A, Weissman A M (2012). HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci, 125(Pt 3): 531–537

DOI PMID

109
Morris S MJr (2006). Arginine: beyond protein. Am J Clin Nutr, 83(2): 508S–512S

DOI PMID

110
Mozaffari M, Hoogeveen-Westerveld M, Kwiatkowski D, Sampson J, Ekong R, Povey S, den Dunnen J T, van den Ouweland A, Halley D, Nellist M (2009). Identification of a region required for TSC1 stability by functional analysis of TSC1 missense mutations found in individuals with tuberous sclerosis complex. BMC Med Genet, 10(1): 88

DOI PMID

111
Mu Z, Wang L, Deng W, Wang J, Wu G (2017). Structural insight into the Ragulator complex which anchors mTORC1 to the lysosomal membrane. Cell Discov, 3: 17049

DOI PMID

112
Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, Okada M (2009). The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J, 28(5): 477–489

DOI PMID

113
Nagy V, Hsia K C, Debler E W, Kampmann M, Davenport A M, Blobel G, Hoelz A (2009). Structure of a trimeric nucleoporin complex reveals alternate oligomerization states. P roc Natl Acad Sci USA, 106(42): 17693–17698

DOI PMID

114
Nakashima N, Noguchi E, Nishimoto T (1999). Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics, 152(3): 853–867

PMID

115
Neklesa T K, Davis R W (2009). A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet, 5(6): e1000515

DOI PMID

116
Nellist M, Goedbloed M A, Halley D J J(2003). Regulation of tuberous sclerosis complex (TSC) function by 14–3-3 proteins. Biochem. Soc. Trans. 31, 587–591. doi:10.1042/

117
Nellist M, van Slegtenhorst M A, Goedbloed M, van den Ouweland A M, Halley D J, van der Sluijs P (1999). Characterization of the cytosolic tuberin-hamartin complex. Tuberin is a cytosolic chaperone for hamartin. J Biol Chem, 274(50): 35647–35652

DOI PMID

118
Nickerson M L, Warren M B, Toro J R, Matrosova V, Glenn G, Turner M L, Duray P, Merino M, Choyke P, Pavlovich C P, Sharma N, Walther M, Munroe D, Hill R, Maher E, Greenberg C, Lerman M I, Linehan W M, Zbar B, Schmidt L S (2002). Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell, 2(2): 157–164

DOI PMID

119
Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K (2003). The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem, 278(18): 15461–15464

DOI PMID

120
Nookala R K, Langemeyer L, Pacitto A, Ochoa-Montaño B, Donaldson J C, Blaszczyk B K, Chirgadze D Y, Barr F A, Bazan J F, Blundell T L (2012). Crystal structure of folliculin reveals a hidDENN function in genetically inherited renal cancer. Open Biol, 2(8): 120071

DOI PMID

121
Norton L E, Layman D K (2006). Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr, 136(2): 533S–537S

DOI PMID

122
Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U, Yonezawa K (2007). The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem, 282(28): 20329–20339

DOI PMID

123
Pacitto A, Ascher D B, Wong L H, Blaszczyk B K, Nookala R K, Zhang N, Dokudovskaya S, Levine T P, Blundell T L (2015). Lst4, the yeast Fnip1/2 orthologue, is a DENN-family protein. Open Biol, 5(12): 150174

DOI PMID

124
Pajusalu S, Reimand T, Õunap K (2015). Novel homozygous mutation in KPTN gene causing a familial intellectual disability-macrocephaly syndrome. Am J Med Genet A, 167A(8): 1913–1915

DOI PMID

125
Panchaud N, Péli-Gulli M P, De Virgilio C (2013a). Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal, 6(277): ra42

DOI PMID

126
Panchaud N, Péli-Gulli M P, De Virgilio C (2013b). SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle, 12(18): 2948–2952

DOI PMID

127
Park S Y, Jin W, Woo J R, Shoelson S E (2011). Crystal structures of human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating protein (RabGAP) domains reveal critical elements for GLUT4 translocation. J Biol Chem, 286(20): 18130–18138

DOI PMID

128
Parmar N, Tamanoi F ( 2010). Rheb G-Proteins and the Activation of mTORC1, in: The Enzymes. Elsevier, pp. 39–56. doi:10.1016/S1874-6047(10)27003-8

129
Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim Y C, Akopiants K, Guan K L, Karin M, Budanov A V (2014). Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Reports, 9(4): 1281–1291

DOI PMID

130
Peeters H, Debeer P, Bairoch A, Wilquet V, Huysmans C, Parthoens E, Fryns J P, Gewillig M, Nakamura Y, Niikawa N, Van de Ven W, Devriendt K (2003). PA26 is a candidate gene for heterotaxia in humans: identification of a novel PA26-related gene family in human and mouse. Hum Genet, 112(5-6): 573–580

DOI PMID

131
Péli-Gulli M P, Raucci S, Hu Z, Dengjel J, De Virgilio C (2017). Feedback Inhibition of the Rag GTPase GAP Complex Lst4-Lst7 Safeguards TORC1 from Hyperactivation by Amino Acid Signals. Cell Reports, 20(2): 281–288

DOI PMID

132
Péli-Gulli M P, Sardu A, Panchaud N, Raucci S, De Virgilio C (2015). Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2. Cell Reports, 13(1): 1–7

DOI PMID

133
Peng M, Yin N, Li M O (2014). Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell, 159(1): 122–133

DOI PMID

134
Peng M, Yin N, Li M O (2017). SZT2 dictates GATOR control of mTORC1 signalling. Nature, 543(7645): 433–437

DOI PMID

135
Peterson T R, Laplante M, Thoreen C C, Sancak Y, Kang S A, Kuehl W M, Gray N S, Sabatini D M (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 137(5): 873–886

DOI PMID

136
Petit C S, Roczniak-Ferguson A, Ferguson S M (2013). Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J Cell Biol, 202(7): 1107–1122

DOI PMID

137
Potter C J, Huang H, Xu T (2001). Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell, 105(3): 357–368

DOI PMID

138
Powis K, Zhang T, Panchaud N, Wang R, De Virgilio C, Ding J (2015). Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res, 25(9): 1043–1059

DOI PMID

139
Pu J, Keren-Kaplan T, Bonifacino J S (2017). A Ragulator-BORC interaction controls lysosome positioning in response to amino acid availability. J Cell Biol, 216(12): 4183–4197

DOI PMID

140
Pu J, Schindler C, Jia R, Jarnik M, Backlund P, Bonifacino J S (2015). BORC, a multisubunit complex that regulates lysosome positioning. Dev Cell, 33(2): 176–188

DOI PMID

141
Qian C, Zhang Q, Wang X, Zeng L, Farooq A, Zhou M M (2005). Structure of the adaptor protein p14 reveals a profilin-like fold with distinct function. J Mol Biol, 347(2): 309–321

DOI PMID

142
Qin J, Wang Z, Hoogeveen-Westerveld M, Shen G, Gong W, Nellist M, Xu W (2016). Structural Basis of the Interaction between Tuberous Sclerosis Complex 1 (TSC1) and Tre2-Bub2-Cdc16 Domain Family Member 7 (TBC1D7). J Biol Chem, 291(16): 8591–8601

DOI PMID

143
Rebsamen M, Pochini L, Stasyk T, de Araújo M E G, Galluccio M, Kandasamy R K, Snijder B, Fauster A, Rudashevskaya E L, Bruckner M, Scorzoni S, Filipek P A, Huber K V M, Bigenzahn J W, Heinz L X, Kraft C, Bennett K L, Indiveri C, Huber L A, Superti-Furga G (2015). SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 519(7544): 477–481

DOI PMID

144
Ricos M G, Hodgson B L, Pippucci T, Saidin A, Ong Y S, Heron S E, Licchetta L, Bisulli F, Bayly M A, Hughes J, Baldassari S, Palombo F, Santucci M, Meletti S, Berkovic S F, Rubboli G, Thomas P Q, Scheffer I E, Tinuper P, Geoghegan J, Schreiber A W, Dibbens L M, and the Epilepsy Electroclinical Study Group (2016). Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol, 79(1): 120–131

DOI PMID

145
Roberg K J, Bickel S, Rowley N, Kaiser C A (1997). Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics, 147(4): 1569–1584

PMID

146
Rosset C, Netto C B O, Ashton-Prolla P (2017). TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol, 40(1): 69–79

DOI PMID

147
Sabatini D M, Erdjument-Bromage H, Lui M, Tempst P, Snyder S H (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell, 78(1): 35–43

DOI PMID

148
Sabers C J, Martin M M, Brunn G J, Williams J M, Dumont F J, Wiederrecht G, Abraham R T (1995). Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem, 270(2): 815–822

DOI PMID

149
Saito K, Araki Y, Kontani K, Nishina H, Katada T (2005). Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J Biochem, 137(3): 423–430

DOI PMID

150
Sancak Y, Bar-Peled L, Zoncu R, Markhard A L, Nada S, Sabatini D M (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141(2): 290–303

DOI PMID

151
Sancak Y, Peterson T R, Shaul Y D, Lindquist R A, Thoreen C C, Bar-Peled L, Sabatini D M (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320(5882): 1496–1501

DOI PMID

152
Sancak Y, Thoreen C C, Peterson T R, Lindquist R A, Kang S A, Spooner E, Carr S A, Sabatin D M (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell, 25(6): 903–915

DOI PMID

153
Sato T, Nakashima A, Guo L, Tamanoi F (2009). Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem, 284(19): 12783–12791

DOI PMID

154
Saucedo L J, Gao X, Chiarelli D A, Li L, Pan D, Edgar B A (2003). Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol, 5(6): 566–571

DOI PMID

155
Saxton R A, Chantranupong L, Knockenhauer K E, Schwartz T U, Sabatini D M (2016a). Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature, 536(7615): 229–233

DOI PMID

156
Saxton R A, Knockenhauer K E, Wolfson R L, Chantranupong L, Pacold M E, Wang T, Schwartz T U, Sabatini D M (2016b). Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science, 351(6268): 53–58

DOI PMID

157
Schalm S S, Blenis J (2002). Identification of a conserved motif required for mTOR signaling. Curr Biol, 12(8): 632–639

DOI PMID

158
Schalm S S, Fingar D C, Sabatini D M, Blenis J (2003). TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol, 13(10): 797–806

DOI PMID

159
Schmidt L S, Linehan W M (2018). FLCN: The causative gene for Birt-Hogg-Dubé syndrome. Gene, 640: 28–42

DOI PMID

160
Schmitzberger F, Harrison S C (2012). RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure. EMBO Rep, 13(3): 216–222

DOI PMID

161
Schürmann A, Brauers A, Massmann S, Becker W, Joost H G (1995). Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases. J Biol Chem, 270(48): 28982–28988

DOI PMID

162
Scrima A, Thomas C, Deaconescu D, Wittinghofer A (2008). The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues. EMBO J, 27(7): 1145–1153

DOI PMID

163
Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T (2001). Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem, 276(10): 7246–7257

DOI PMID

164
Shen K, Choe A, Sabatini D M (2017). Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Mol Cell, 68(3): 552–565.e8

DOI PMID

165
Shen K, Huang R K, Brignole E J, Condon K J, Valenstein M L, Chantranupong L, Bomaliyamu A, Choe A, Hong C, Yu Z, Sabatini D M (2018). Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature, 556(7699): 64–69

DOI PMID

166
Shumway S D, Li Y, Xiong Y (2003). 14-3-3beta binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin. J Biol Chem, 278(4): 2089–2092

DOI PMID

167
Springe r T A (1997). Folding of the N-terminal, ligand-binding region of integrin alpha-subunits into a beta-propeller domain. Proc Natl Acad Sci USA, 94(1): 65–72

DOI PMID

168
Starling G P, Yip Y Y, Sanger A, Morton P E, Eden E R, Dodding M P (2016). Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep, 17(6): 823–841

DOI PMID

169
Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E (2003). Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol, 5(6): 559–565

DOI PMID

170
Stuwe T, Correia A R, Lin D H, Paduc h M, Lu V T, Kossiakoff A A, Hoelz A (2015). Nuclear pores. Architecture of the nuclear pore complex coat. Science, 347(6226): 1148–1152

DOI PMID

171
Su M Y, Morris K L, Kim D J, Fu Y, Lawrence R, Stjepanovic G, Zoncu R, Hurley J H (2017). Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex. Mol Cell, 68(5): 835–846.e3

DOI PMID

172
Sun W, Zhu Y J, Wang Z, Zhong Q, Gao F, Lou J, Gong W, Xu W (2013). Crystal structure of the yeast TSC1 core domain and implications for tuberous sclerosis pathological mutations. Nat Commun, 4(1): 2135

DOI PMID

173
Takahashi K, Nakagawa M, Young S G, Yamanaka S (2005). Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol Chem, 280(38): 32768–32774

DOI PMID

174
Tapon N, Ito N, Dickson B J, Treisman J E, Hariharan I K (2001). The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell, 105(3): 345–355

DOI PMID

175
Tee A R, Fingar D C, Manning B D, Kwiatkowski D J, Cantley L C, Blenis J (2002). Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA, 99(21): 13571–13576

DOI PMID

176
Tee A R, Manning B D, Roux P P, Cantley L C, Blenis J (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol, 13(15): 1259–1268

DOI PMID

177
Teis D, Wunderlich W, Huber L A (2002). Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell, 3(6): 803–814

DOI PMID

178
Tomasoni R, Mondino A (2011). The tuberous sclerosis complex: balancing proliferation and survival. Biochem Soc Trans, 39(2): 466–471

DOI PMID

179
Tsun Z Y, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini D M (2013). The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell, 52(4): 495–505

DOI PMID

180
van der Kant R, Jonker C T H, Wijdeven R H, Bakker J, Janssen L, Klumperman J, Neefjes J (2015). Characterization of the mammalian CORVET and HOPS complexes and their modular restructuring for endosome specificity. J Biol Chem, 290(51): 30280–30290

DOI PMID

181
van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell R G, Cheadle J P, Jones A C, Tachataki M, Ravine D, Sampson J R, Reeve M P, Richardson P, Wilmer F, Munro C, Hawkins T L, Sepp T, Ali J B, Ward S, Green A J, Yates J R, Kwiatkowska J, Henske E P, Short M P, Haines J H, Jozwiak S, Kwiatkowski D J (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277(5327): 805–808

DOI PMID

182
van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, Reuser A, Sampson J, Halley D, van der Sluijs P (1998). Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet, 7(6): 1053–1057

DOI PMID

183
Vander Haar E, Lee S I, Bandhakavi S, Griffin T J, Kim D H (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol, 9(3): 316–323

DOI PMID

184
Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N (1999). PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene, 18(1): 127–137

DOI PMID

185
Vilella-Bach M, Nuzzi P, Fang Y, Chen J (1999). The FKBP12-rapamycin-binding domain is required for FKBP12-rapamycin-associated protein kinase activity and G1 progression. J Biol Chem, 274(7): 4266–4272

DOI PMID

186
Wang S, Tsun Z Y, Wolfson R L, Shen K, Wyant G A, Plovanich M E, Yuan E D, Jones T D, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini B L, Sabatini D M (2015). Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 347(6218): 188–194

DOI PMID

187
Wenter R, Hütz K, Dibbern D, Li T, Reisinger V, Plösche r M, Eichacker L, Eddie B, Hanson T, Bryant D A, Overmann J (2010). Expression-based identification of genetic determinants of the bacterial symbiosis ‘Chlorochromatium aggregatum’. Environ Microbiol, 12(8): 2259–2276 doi:10.1111/j.1462-2920.2010.02206.x

PMID

188
Whittaker C A, Hynes R O (2002). Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell, 13(10): 3369–3387

DOI PMID

189
Whittle J R R, Schwartz T U (2010). Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat. J Cell Biol, 190(3): 347–361

DOI PMID

190
Wolfson R L, Chantranupong L, Wyant G A, Gu X, Orozco J M, Shen K, Condon K J, Petri S, Kedir J, Scaria S M, Abu-Remaileh M, Frankel W N, Sabatini D M (2017). KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature, 543(7645): 438–442

DOI PMID

191
Wolfson R L, Sabatini D M (2017). The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway. Cell Metab, 26(2): 301–309

DOI PMID

192
Wu X, Tu B P (2011). Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation. Mol Biol Cell, 22(21): 4124–4133

DOI PMID

193
Xia J, Wang R, Zhang T, Ding J (2016). Structural insight into the arginine-binding specificity of CASTOR1 in amino acid-dependent mTORC1 signaling. Cell Discov, 2(1): 16035

DOI PMID

194
Xiong J P, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott D L, Joachimiak A, Goodman S L, Arnaout M A (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science, 294(5541): 339–345

DOI PMID

195
Xu C, Min J (2011). Structure and function of WD40 domain proteins. Protein Cell, 2(3): 202–214

DOI PMID

196
Yamagata K, Sanders L K, Kaufmann W E, Yee W, Barnes C A, Nathans D, Worley P F (1994). rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem, 269(23): 16333–16339

PMID

197
Yang H, Wang J, L M, Chen X, Huang M, Tan D, Dong M Q, Wong C C L, Wang J, Xu Y, Wang H W (2016). 4.4 Å Resolution Cryo-EM structure of human mTOR Complex 1. Protein Cell 7, 878–887.

DOI

198
Yang H, Jiang X, Li B, Yang H J, Miller M, Yang A, Dhar A, Pavletich N P (2017). Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature, 552(7685): 368–373

DOI PMID

199
Yang H, Rudge D G, Koos J D, Vaidialingam B, Yang H J, Pavletich N P (2013). mTOR kinase structure, mechanism and regulation. Nature, 497(7448): 217–223

DOI PMID

200
Yonehara R, Nada S, Nakai T, Nakai M, Kitamura A, Ogawa A, Nakatsumi H, Nakayama K I, Li S, Standley D M, Yamashita E, Nakagawa A, Okada M (2017). Structural basis for the assembly of the Ragulator-Rag GTPase complex. Nat Commun, 8(1): 1625

DOI PMID

201
Yu Y, Li S, Xu X, Li Y, Guan K, Arnold E, Ding J (2005). Structural basis for the unique biological function of small GTPase RHEB. J Biol Chem, 280(17): 17093–17100

DOI PMID

202
Zanetti G, Prinz S, Daum S, Meister A, Schekman R, Bacia K, Briggs J A G (2013). The structure of the COPII transport-vesicle coat assembled on membranes. eLife, 2: e00951

DOI PMID

203
Zech R, Kiontke S, Mueller U, Oeckinghaus A, Kümmel D (2016). Structure of the Tuberous Sclerosis Complex 2 (TSC2) N Terminus Provides Insight into Complex Assembly and Tuberous Sclerosis Pathogenesis. J Biol Chem, 291(38): 20008–20020

DOI PMID

204
Zhang D, Iyer L M, He F, Aravind L (2012). Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. Front Genet, 3: 283

DOI PMID

205
Zhang T, Péli-Gulli M P, Yang H, De Virgilio C, Ding J (2012). Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1. Structure, 20(12): 2151–2160

DOI PMID

206
Zhang T, Wang R, Wang Z, Wang X, Wang F, Ding J (2017). Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1. Nat Commun, 8(1): 1394

DOI PMID

207
Zhang Y, Gao X, Saucedo L J, Ru B, Edgar B A, Pan D (2003). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol, 5(6): 578–581

DOI PMID

208
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini D M (2011). mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 334(6056): 678–683

DOI PMID

Outlines

/