Received date: 30 Apr 2018
Accepted date: 01 Jun 2018
Published date: 31 Jul 2018
Copyright
BACKGROUND: CREB binding protein (CBP) and its close paralogue p300 are transcriptional coactivators with intrinsic acetyltransferase activity. Both CBP/p300 play critical roles in development and diseases. The enzymatic and biological functions of CBP/p300 are tightly regulated by themselves and by external factors. However, a comprehensive up-to-date review of the intramolecular and intermolecular regulations is lacking.
OBJECTIVE: To summarize the molecular mechanisms regulating CBP/p300s functions.
METHODS: A systematic literature search was conducted using the PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) for literatures published during 1985-2018. Keywords “CBP regulation” or “p300 regulation” were used for the search.
RESULTS: The functions of CBP/p300, especially their acetyltransferase activity and chromatin association, are regulated both intramolecularly by their autoinhibitory loop (AIL), bromodomain, and PHD-RING region and intermolecularly by their interacting partners. The intramolecular mechanisms equip CBP/p300 with the capability of self-regulation while the intermolecular mechanisms allow them to respond to various cell signaling pathways.
CONCLUSION: Investigations into those regulation mechanisms are crucial to our understanding of CBP/p300s role in development and pathogenesis. Pharmacological interventions targeting these regulatory mechanisms have therapeutic potentials.
Key words: p300; CBP; histone acetylation; autoacetylation; HAT
Yongming Xue , Hong Wen , Xiaobing Shi . CBP/p300: intramolecular and intermolecular regulations[J]. Frontiers in Biology, 2018 , 13(3) : 168 -179 . DOI: 10.1007/s11515-018-1502-6
1 |
Arany Z, Sellers W R, Livingston D M, Eckner R (1994). E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell, 77(6): 799–800
|
2 |
Bannister A J, Kouzarides T (1996). The CBP co-activator is a histone acetyltransferase. Nature, 384(6610): 641–643
|
3 |
Berk A J (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene, 24(52): 7673–7685
|
4 |
Best J L, Amezcua C A, Mayr B, Flechner L, Murawsky C M, Emerson B, Zor T, Gardner K H, Montminy M (2004). Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci USA, 101(51): 17622–17627
|
5 |
Black J C, Choi J E, Lombardo S R, Carey M (2006). A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell, 23(6): 809–818
|
6 |
Block K M, Wang H, Szabó L Z, Polaske N W, Henchey L K, Dubey R, Kushal S, László C F, Makhoul J, Song Z, Meuillet E J, Olenyuk B Z (2009). Direct inhibition of hypoxia-inducible transcription factor complex with designed dimeric epidithiodiketopiperazine. J Am Chem Soc, 131(50): 18078–18088
|
7 |
Bose D A, Donahue G, Reinberg D, Shiekhattar R, Bonasio R, Berger S L (2017). RNA Binding to CBP Stimulates Histone Acetylation and Transcription. Cell 168, 135–149 e122
|
8 |
Bowers E M, Yan G, Mukherjee C, Orry A, Wang L, Holbert M A, Crump N T, Hazzalin C A, Liszczak G, Yuan H, Larocca C, Saldanha S A, Abagyan R, Sun Y, Meyers D J, Marmorstein R, Mahadevan L C, Alani R M, Cole P A (2010). Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol, 17(5): 471–482
|
9 |
Ceschin D G, Walia M, Wenk S S, Duboé C, Gaudon C, Xiao Y, Fauquier L, Sankar M, Vandel L, Gronemeyer H (2011). Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev, 25(11): 1132–1146
|
10 |
Chakravarti D, LaMorte V J, Nelson M C, Nakajima T, Schulman I G, Juguilon H, Montminy M, Evans R M (1996). Role of CBP/P300 in nuclear receptor signalling. Nature, 383(6595): 99–103
|
11 |
Chakravarti D, Ogryzko V, Kao H Y, Nash A, Chen H, Nakatani Y, Evans R M (1999). A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell, 96(3): 393–403
|
12 |
Chan H M, La Thangue N B (2001). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci, 114(Pt 13): 2363–2373
|
13 |
Chen C C, Carson J J, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler J K (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134(2): 231–243
|
14 |
Chen, J., and Li, Q. (2011). Life and death of transcriptional co-activator p300. Epigenetics: official journal of the DNA Methylation Society 6, 957–961.
|
15 |
Chen Y J, Wang Y N, Chang W C (2007). ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression. J Biol Chem, 282(37): 27215–27228
|
16 |
Chevillard-Briet M, Trouche D, Vandel L (2002). Control of CBP co-activating activity by arginine methylation. EMBO J, 21(20): 5457–5466
|
17 |
Chrivia J C, Kwok R P, Lamb N, Hagiwara M, Montminy M R, Goodman R H (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 365(6449): 855–859
|
18 |
Conery A R, Centore R C, Neiss A, Keller P J, Joshi S, Spillane K L, Sandy P, Hatton C, Pardo E, Zawadzke L (2016). Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. eLife, 5: e10483
|
19 |
Contreras-Martos S, Piai A, Kosol S, Varadi M, Bekesi A, Lebrun P, Volkov A N, Gevaert K, Pierattelli R, Felli I C, Tompa P (2017). Linking functions: an additional role for an intrinsically disordered linker domain in the transcriptional coactivator CBP. Sci Rep, 7(1): 4676
|
20 |
Dancy B M, Cole P A (2015). Protein lysine acetylation by p300/CBP. Chem Rev, 115(6): 2419–2452
|
21 |
Das C, Lucia M S, Hansen K C, Tyler J K (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459(7243): 113–117
|
22 |
Das C, Roy S, Namjoshi S, Malarkey C S, Jones D N, Kutateladze T G, Churchill M E, Tyler J K (2014). Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc Natl Acad Sci USA, 111(12): E1072–E1081
|
23 |
Debe s J D, Sebo T J, Lohse C M, Murphy L M, Haugen D A, Tindall D J (2003). p300 in prostate cancer proliferation and progression. Cancer Res, 63(22): 7638–7640
|
24 |
Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D (2013). Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol, 20(9): 1040–1046
|
25 |
Dyson H J, Wright P E (2016). Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J Biol Chem, 291(13): 6714–6722
|
26 |
Eckner R, Ewen M E, Newsome D, Gerdes M, DeCaprio J A, Lawrence J B, Livingston D M (1994). Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev, 8(8): 869–884
|
27 |
Fonte C, Grenier J, Trousson A, Chauchereau A, Lahuna O, Baulieu E E, Schumacher M, Massaad C (2005). Involvement of beta-catenin and unusual behavior of CBP and p300 in glucocorticosteroid signaling in Schwann cells. Proc Natl Acad Sci USA, 102(40): 14260–14265
|
28 |
Fryer C J, Lamar E, Turbachova I, Kintner C, Jones K A (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev, 16(11): 1397–1411
|
29 |
Ghosh S, Taylor A, Chin M, Huang H R, Conery A R, Mertz J A, Salmeron A, Dakle P J, Mele D, Cote A, Jayaram H, Setser J W, Poy F, Hatzivassiliou G, DeAlmeida-Nagata D, Sandy P, Hatton C, Romero F A, Chiang E, Reimer T, Crawford T, Pardo E, Watson V G, Tsui V, Cochran A G, Zawadzke L, Harmange J C, Audia J E, Bryant B M, Cummings R T, Magnuson S R, Grogan J L, Bellon S F, Albrecht B K, Sims R J3rd, Lora J M (2016). Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition. J Biol Chem, 291(25): 13014–13027
|
30 |
Giotopoulos G, Chan W I, Horton S J, Ruau D, Gallipoli P, Fowler A, Crawley C, Papaemmanuil E, Campbell P J, Göttgens B, Van Deursen J M, Cole P A, Huntly B J (2016). The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene, 35(3): 279–289
|
31 |
Girdwood D, Bumpass D, Vaughan O A, Thain A, Anderson L A, Snowden A W, Garcia-Wilson E, Perkins N D, Hay R T (2003). P300 transcriptional repression is mediated by SUMO modification. Mol Cell, 11(4): 1043–1054
|
32 |
Goodman R H, Smolik S (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev, 14(13): 1553–1577
|
33 |
Hamamori Y, Sartorelli V, Ogryzko V, Puri P L, Wu H Y, Wang J Y, Nakatani Y, Kedes L (1999). Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell, 96(3): 405–413
|
34 |
Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan P E, Hay D A, Martinez F O, Al-Mossawi M H, de Wit J, Vecellio M, Wells C, Wordsworth P, Müller S, Knapp S, Bowness P (2015). CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci USA, 112(34): 10768–10773
|
35 |
Hansson M L, Popko-Scibor A E, Saint Just Ribeiro M, Dancy B M, Lindberg M J, Cole P A, Wallberg A E (2009). The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity. Nucleic Acids Res, 37(9): 2996–3006
|
36 |
Heintzman N D, Stuart R K, Hon G, Fu Y, Ching C W, Hawkins R D, Barrera L O, Van Calcar S, Qu C, Ching K A, Wang W, Weng Z, Green R D, Crawford G E, Ren B (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 39(3): 311–318
|
37 |
Hong L, Schroth G P, Matthews H R, Yau P, Bradbury E M (1993). Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem, 268(1): 305–314
|
38 |
Horton S J, Giotopoulos G, Yun H, Vohra S, Sheppard O, Bashford-Rogers R, Rashid M, Clipson A, Chan W I, Sasca D, Yiangou L, Osaki H, Basheer F, Gallipoli P, Burrows N, Erdem A, Sybirna A, Foerster D, Zhao W, Sustic T, Petrunkina Harrison A, Laurenti E, Okosun J, Hodson D, Wright P, Smith K G, Maxwell P, Fitzgibbon J, Du M Q, Adams D J, Huntly B J P (2017). Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nat Cell Biol, 19(9): 1093–1104
|
39 |
Horwitz G A, Zhang K, McBrian M A, Grunstein M, Kurdistani S K, Berk A J (2008). Adenovirus small e1a alters global patterns of histone modification. Science, 321(5892): 1084–1085
|
40 |
Huang W C, Chen C C (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol, 25(15): 6592–6602
|
41 |
Jang E R, Choi J D, Jeong G, Lee J S (2010). Phosphorylation of p300 by ATM controls the stability of NBS1. Biochem Biophys Res Commun, 397(4): 637–643
|
42 |
Jiang Y, Ortega-Molina A, Geng H, Ying H Y, Hatzi K, Parsa S, McNally D, Wang L, Doane A S, Agirre X, Teater M, Meydan C, Li Z, Poloway D, Wang S, Ennishi D, Scott D W, Stengel K R, Kranz J E, Holson E, Sharma S, Young J W, Chu C S, Roeder R G, Shaknovich R, Hiebert S W, Gascoyne R D, Tam W, Elemento O, Wendel H G, Melnick A M (2017). CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas. Cancer Discov, 7(1): 38–53
|
43 |
Jin Q, Yu L R, Wang L, Zhang Z, Kasper L H, Lee J E, Wang C, Brindle P K, Dent S Y, Ge K (2011). Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J, 30(2): 249–262
|
44 |
Kalkhoven E (2004). CBP and p300: HATs for different occasions. Biochem Pharmacol, 68(6): 1145–1155
|
45 |
Karanam B, Jiang L, Wang L, Kelleher N L, Cole P A (2006). Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation. J Biol Chem, 281(52): 40292–40301
|
46 |
Kasper L H, Boussouar F, Ney P A, Jackson C W, Rehg J, van Deursen J M, Brindle P K (2002). A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature, 419(6908): 738–743
|
47 |
Kasper L H, Fukuyama T, Biesen M A, Boussouar F, Tong C, de Pauw A, Murray P J, van Deursen J M, Brindle P K (2006). Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol, 26(3): 789–809
|
48 |
Kawasaki H, Eckner R, Yao T P, Taira K, Chiu R, Livingston D M, Yokoyama K K (1998). Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature, 393(6682): 284–289
|
49 |
Kim T K, Hemberg M, Gray J M, Costa A M, Bear D M, Wu J, Harmin D A, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley P F, Kreiman G, Greenberg M E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295): 182–187
|
50 |
Korzus E (2017). Rubinstein-Taybi Syndrome and Epigenetic Alterations. Adv Exp Med Biol, 978: 39–62
|
51 |
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705
|
52 |
Kraus W L, Manning E T, Kadonaga J T (1999). Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol Cell Biol, 19(12): 8123–8135
|
53 |
Kung A L, Rebel V I, Bronson R T, Ch’ng L E, Sieff C A, Livingston D M, Yao T P (2000). Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev, 14(3): 272–277
|
54 |
Kung A L, Zabludoff S D, France D S, Freedman S J, Tanner E A, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli H U, Petersen F, Eck M J, Bair K W, Wood A W, Livingston D M (2004). Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell, 6(1): 33–43
|
55 |
Kuo H Y, Chang C C, Jeng J C, Hu H M, Lin D Y, Maul G G, Kwok R P, Shih H M (2005). SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci USA, 102(47): 16973–16978
|
56 |
Kwok R P, Lundblad J R, Chrivia J C, Richards J P, Bächinger H P, Brennan R G, Roberts S G, Green M R, Goodman R H (1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature, 370(6486): 223–226
|
57 |
Lasko L M, Jakob C G, Edalji R P, Qiu W, Montgomery D, Digiammarino E L, Hansen T M, Risi R M, Frey R, Manaves V, Shaw B, Algire M, Hessler P, Lam L T, Uziel T, Faivre E, Ferguson D, Buchanan F G, Martin R L, Torrent M, Chiang G G, Karukurichi K, Langston J W, Weinert B T, Choudhary C, de Vries P, Van Drie J H, McElligott D, Kesicki E, Marmorstein R, Sun C, Cole P A, Rosenberg S H, Michaelides M R, Lai A, Bromberg K D (2017). Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature, 550(7674): 128–132
|
58 |
Lau O D, Kundu T K, Soccio R E, Ait-Si-Ali S, Khalil E M, Vassilev A, Wolffe A P, Nakatani Y, Roeder R G, Cole P A (2000). HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell, 5(3): 589–595
|
59 |
Lee Y H, Coonrod S A, Kraus W L, Jelinek M A, Stallcup M R (2005). Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci USA, 102(10): 3611–3616
|
60 |
Liu X, Wang L, Zhao K, Thompson P R, Hwang Y, Marmorstein R, Cole P A (2008). The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 451(7180): 846–850
|
61 |
Madison D L, Yaciuk P, Kwok R P, Lundblad J R (2002). Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem, 277(41): 38755–38763
|
62 |
Martincorena I, Campbell P J (2015). Somatic mutation in cancer and normal cells. Science, 349(6255): 1483–1489
|
63 |
Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol, 2(8): 599–609
|
64 |
Michaelides M R, Kluge A, Patane M, Van Drie J H, Wang C, Hansen T M, Risi R M, Mantei R, Hertel C, Karukurichi K, Nesterov A, McElligott D, de Vries P, Langston J W, Cole P A, Marmorstein R, Liu H, Lasko L, Bromberg K D, Lai A, Kesicki E A (2017). Discovery of Spiro Oxazolidinediones as Selective, Orally Bioavailable Inhibitors of p300/CBP Histone Acetyltransferases. ACS Med Chem Lett, 9(1): 28–33
|
65 |
Morin R D, Mendez-Lago M, Mungall A J, Goya R, Mungall K L, Corbett R D, Johnson N A, Severson T M, Chiu R, Field M, Jackman S, Krzywinski M, Scott D W, Trinh D L, Tamura-Wells J, Li S, Firme M R, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer I M, Zhao E Y, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli J J, Ben-Neriah S, Meissner B, Woolcock B, Boyle M, McDonald H, Tam A, Zhao Y, Delaney A, Zeng T, Tse K, Butterfield Y, Birol I, Holt R, Schein J, Horsman D E, Moore R, Jones S J, Connors J M, Hirst M, Gascoyne R D, Marra M A (2011). Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature, 476(7360): 298–303
|
66 |
Mullighan C G, Zhang J, Kasper L H, Lerach S, Payne-Turner D, Phillips L A, Heatley S L, Holmfeldt L, Collins-Underwood J R, Ma J, Buetow K H, Pui C H, Baker S D, Brindle P K, Downing J R (2011). CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature, 471(7337): 235–239
|
67 |
Nguyen U T, Bittova L, Müller M M, Fierz B, David Y, Houck-Loomis B, Feng V, Dann G P, Muir T W (2014). Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods, 11(8): 834–840
|
68 |
Ogryzko V V, Schiltz R L, Russanova V, Howard B H, Nakatani Y (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87(5): 953–959
|
69 |
Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 93(9): 2771–2779
|
70 |
Park S, Martinez-Yamout M A, Dyson H J, Wright P E (2013). The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Lett, 587(16): 2506–2511
|
71 |
Park S, Stanfield R L, Martinez-Yamout M A, Dyson H J, Wilson I A, Wright P E (2017). Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Natl Acad Sci USA, 114(27): E5335–E5342
|
72 |
Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper L H, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty V V, Mullighan C G, Gaidano G, Rabadan R, Brindle P K, Dalla-Favera R (2011). Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature, 471(7337): 189–195
|
73 |
Peifer M, Fernández-Cuesta L, Sos M L, George J, Seidel D, Kasper L H, Plenker D, Leenders F, Sun R, Zander T, Menon R, Koker M, Dahmen I, Müller C, Di Cerbo V, Schildhaus H U, Altmüller J, Baessmann I, Becker C, de Wilde B, Vandesompele J, Böhm D, Ansén S, Gabler F, Wilkening I, Heynck S, Heuckmann J M, Lu X, Carter S L, Cibulskis K, Banerji S, Getz G, Park K S, Rauh D, Grütter C, Fischer M, Pasqualucci L, Wright G, Wainer Z, Russell P, Petersen I, Chen Y, Stoelben E, Ludwig C, Schnabel P, Hoffmann H, Muley T, Brockmann M, Engel-Riedel W, Muscarella L A, Fazio V M, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman D A, Snijders P J, Cappuzzo F, Ligorio C, Damiani S, Field J, Solberg S, Brustugun O T, Lund-Iversen M, Sänger J, Clement J H, Soltermann A, Moch H, Weder W, Solomon B, Soria J C, Validire P, Besse B, Brambilla E, Brambilla C, Lantuejoul S, Lorimier P, Schneider P M, Hallek M, Pao W, Meyerson M, Sage J, Shendure J, Schneider R, Büttner R, Wolf J, Nürnberg P, Perner S, Heukamp L C, Brindle P K, Haas S, Thomas R K (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet, 44(10): 1104–1110
|
74 |
Perissi V, Dasen J S, Kurokawa R, Wang Z, Korzus E, Rose D W, Glass C K, Rosenfeld M G (1999). Factor-specific modulation of CREB-binding protein acetyltransferase activity. Proc Natl Acad Sci USA, 96(7): 3652–3657
|
75 |
Petrij F, Giles R H, Dauwerse H G, Saris J J, Hennekam R C, Masuno M, Tommerup N, van Ommen G J, Goodman R H, Peters D J (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376(6538): 348–351
|
76 |
Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, Olzscha H, Monteiro O, Martin S, Philpott M, Tumber A, Filippakopoulos P, Yapp C, Wells C, Che K H, Bannister A, Robson S, Kumar U, Parr N, Lee K, Lugo D, Jeffrey P, Taylor S, Vecellio M L, Bountra C, Brennan P E, O’Mahony A, Velichko S, Müller S, Hay D, Daniels D L, Urh M, La Thangue N B, Kouzarides T, Prinjha R, Schwaller J, Knapp S (2015). Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Res, 75(23): 5106–5119
|
77 |
Plotnikov A N, Yang S, Zhou T J, Rusinova E, Frasca A, Zhou M M (2014). Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP. Structure, 22(2): 353–360
|
78 |
Rack J G M, Lutter T, Kjæreng Bjerga G E, Guder C, Ehrhardt C, Värv S, Ziegler M, Aasland R (2014). The PHD finger of p300 influences its ability to acetylate histone and non-histone targets. J Mol Biol, 426(24): 3960–3972
|
79 |
Radhakrishnan I, Pérez-Alvarado G C, Parker D, Dyson H J, Montminy M R, Wright P E (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell, 91(6): 741–752
|
80 |
Rebel V I, Kung A L, Tanner E A, Yang H, Bronson R T, Livingston D M (2002). Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA, 99(23): 14789–14794
|
81 |
Roe J S, Mercan F, Rivera K, Pappin D J, Vakoc C R (2015). BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia. Mol Cell, 58(6): 1028–1039
|
82 |
Rojas J R, Trievel R C, Zhou J, Mo Y, Li X, Berger S L, Allis C D, Marmorstein R (1999). Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature, 401(6748): 93–98
|
83 |
Roth S Y, Allis C D (1996). Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell, 87(1): 5–8
|
84 |
Saint Just Ribeiro M, Hansson M L, Wallberg A E (2007). A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem J, 404(2): 289–298
|
85 |
Sanchez R, Zhou M M (2011). The PHD finger: a versatile epigenome reader. Trends Biochem Sci, 36(7): 364–372
|
86 |
Schiltz R L, Mizzen C A, Vassilev A, Cook R G, Allis C D, Nakatani Y (1999). Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem, 274(3): 1189–1192
|
87 |
Shi X, Hong T, Walter K L, Ewalt M, Michishita E, Hung T, Carney D, Peña P, Lan F, Kaadige M R, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns B R, Ayer D E, Kutateladze T G, Shi Y, Côté J, Chua K F, Gozani O (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 442(7098): 96–99
|
88 |
Shogren-Knaak M, Ishii H, Sun J M, Pazin M J, Davie J R, Peterson C L (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311(5762): 844–847
|
89 |
Solomon B D, Bodian D L, Khromykh A, Mora G G, Lanpher B C, Iyer R K, Baveja R, Vockley J G, Niederhuber J E (2015). Expanding the phenotypic spectrum in EP300-related Rubinstein-Taybi syndrome. Am J Med Genet A, 167A(5): 1111–1116
|
90 |
Stein R W, Corrigan M, Yaciuk P, Whelan J, Moran E (1990). Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol, 64(9): 4421–4427
|
91 |
Szerlong H J, Prenni J E, Nyborg J K, Hansen J C (2010). Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. J Biol Chem, 285(42): 31954–31964
|
92 |
Tanaka Y, Naruse I, Hongo T, X u M, Nakahata T, Maekawa T, Ishii S (2000). Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev, 95(1-2): 133–145
|
93 |
Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroishi T, Ishii S (1997). Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci USA, 94(19): 10215–10220
|
94 |
Tang Z, Chen W Y, Shimada M, Nguyen U T, Kim J, Sun X J, Sengoku T, McGinty R K, Fernandez J P, Muir T W, Roeder R G (2013). SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell, 154(2): 297–310
|
95 |
Tessarz P, Kouzarides T (2014). Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol, 15(11): 703–708
|
96 |
Thompson P R, Kurooka H, Nakatani Y, Cole P A (2001). Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J Biol Chem, 276(36): 33721–33729
|
97 |
Thompson P R, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder R G, Wong J, Levrero M, Sartorelli V, Cotter R J, Cole P A (2004). Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol, 11(4): 308–315
|
98 |
Trievel R C, Rojas J R, Sterner D E, Venkataramani R N, Wang L, Zhou J, Allis C D, Berger S L, Marmorstein R (1999). Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA, 96(16): 8931–8936
|
99 |
Tse C, Sera T, Wolffe A P, Hansen J C (1998). Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol, 18(8): 4629–4638
|
100 |
Vempati R K, Jayani R S, Notani D, Sengupta A, Galande S, Haldar D (2010). p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem, 285(37): 28553–28564
|
101 |
Visel A, Blow M J, Li Z, Zhang T, Akiyama J A, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin E M, Pennacchio L A (2009). ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 457(7231): 854–858
|
102 |
Vo N, Goodman R H (2001). CREB-binding protein and p300 in transcriptional regulation. J Biol Chem, 276(17): 13505–13508
|
103 |
Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong C C L, Su H, Zhou T, Xia H (2017). mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. Molecular cell 68, 323–335 e326.
|
104 |
Wang F, Marshall C B, Ikura M (2013a). Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci, 70(21): 3989–4008
|
105 |
Wang Q E, Han C, Zhao R, Wani G, Zhu Q, Gong L, Battu A, Racoma I, Sharma N, Wani A A (2013b). p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res, 41(3): 1722–1733
|
106 |
Wang Z, Zang C, Cui K, Schones D E, Barski A, Peng W, Zhao K (2009). Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell, 138(5): 1019–1031
|
107 |
Whyte P, Williamson N M, Harlow E (1989). Cellular targets for transformation by the adenovirus E1A proteins. Cell, 56(1): 67–75
|
108 |
Xu L, Cheng A, Huang M, Zhang J, Jiang Y, Wang C, Li F, Bao H, Gao J, Wang N, Liu J, Wu J, Wong C C L, Ruan K (2017). Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein. FEBS J, 284(20): 3422–3436
|
109 |
Xu W, Chen H, Du K, Asahara H, Tini M, Emerson B M, Montminy M, Evans R M (2001). A transcriptional switch mediated by cofactor methylation. Science, 294(5551): 2507–2511
|
110 |
Yao T P, Oh S P, Fuchs M, Zhou N D, Ch’ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 93(3): 361–372
|
111 |
Yee S P, Branton P E (1985). Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology, 147(1): 142–153
|
112 |
Yuan L W, Soh J W, Weinstein I B (2002). Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim Biophys Acta, 1592(2): 205–211
|
113 |
Zeng L, Zhang Q, Gerona-Navarro G, Moshkina N, Zhou M M (2008). Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300. Structure, 16(4): 643–652
|
114 |
Zhang J, Vlasevska S, Wells V A, Nataraj S, Holmes A B, Duval R, Meyer S N, Mo T, Basso K, Brindle P K, Hussein S, Dalla-Favera R, Pasqualucci L (2017a). The CREBBP Acetyltransferase Is a Haploinsufficient Tumor Suppressor in B-cell Lymphoma. Cancer Discov, 7(3): 322–337
|
115 |
Zhang R, Erler J, Langowski J (2017b). Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter-nucleosome Interaction. Biophys J, 112(3): 450–459
|
116 |
Zhong J, Ding L, Bohrer L R, Pan Y, Liu P, Zhang J, Sebo T J, Karnes R J, Tindall D J, van Deursen J, Huang H (2014). p300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate tumorigenesis. Cancer Res, 74(6): 1870–1880
|
117 |
Zhu P, Li G (2016). Structural insights of nucleosome and the 30-nm chromatin fiber. Curr Opin Struct Biol, 36: 106–115
|
118 |
Zucconi B E, Luef B, Xu W, Henry R A, Nodelman I M, Bowman G D, Andrews A J, Cole P A (2016). Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112. Biochemistry, 55(27): 3727–3734
|
/
〈 | 〉 |