REVIEW

CBP/p300: intramolecular and intermolecular regulations

  • Yongming Xue , 1,2 ,
  • Hong Wen 1,3 ,
  • Xiaobing Shi , 1,2,3
Expand
  • 1. Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
  • 2. Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
  • 3. Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA

Received date: 30 Apr 2018

Accepted date: 01 Jun 2018

Published date: 31 Jul 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

BACKGROUND: CREB binding protein (CBP) and its close paralogue p300 are transcriptional coactivators with intrinsic acetyltransferase activity. Both CBP/p300 play critical roles in development and diseases. The enzymatic and biological functions of CBP/p300 are tightly regulated by themselves and by external factors. However, a comprehensive up-to-date review of the intramolecular and intermolecular regulations is lacking.

OBJECTIVE: To summarize the molecular mechanisms regulating CBP/p300s functions.

METHODS: A systematic literature search was conducted using the PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) for literatures published during 1985-2018. Keywords “CBP regulation” or “p300 regulation” were used for the search.

RESULTS: The functions of CBP/p300, especially their acetyltransferase activity and chromatin association, are regulated both intramolecularly by their autoinhibitory loop (AIL), bromodomain, and PHD-RING region and intermolecularly by their interacting partners. The intramolecular mechanisms equip CBP/p300 with the capability of self-regulation while the intermolecular mechanisms allow them to respond to various cell signaling pathways.

CONCLUSION: Investigations into those regulation mechanisms are crucial to our understanding of CBP/p300s role in development and pathogenesis. Pharmacological interventions targeting these regulatory mechanisms have therapeutic potentials.

Cite this article

Yongming Xue , Hong Wen , Xiaobing Shi . CBP/p300: intramolecular and intermolecular regulations[J]. Frontiers in Biology, 2018 , 13(3) : 168 -179 . DOI: 10.1007/s11515-018-1502-6

Compliance with ethics guidelines

The authors declare no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Acknowledgments

We thank members of the Shi laboratory for discussions. This work was supported in part by grants from NIH/NCI (CA204020) and Leukemia & Lymphoma Society (1339-17) to X.S.. X.S. is a Scientific Advisory Board member of EpiCypher.
1
Arany Z, Sellers W R, Livingston D M, Eckner R (1994). E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell, 77(6): 799–800

DOI PMID

2
Bannister A J, Kouzarides T (1996). The CBP co-activator is a histone acetyltransferase. Nature, 384(6610): 641–643

DOI PMID

3
Berk A J (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene, 24(52): 7673–7685

DOI PMID

4
Best J L, Amezcua C A, Mayr B, Flechner L, Murawsky C M, Emerson B, Zor T, Gardner K H, Montminy M (2004). Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc Natl Acad Sci USA, 101(51): 17622–17627

DOI PMID

5
Black J C, Choi J E, Lombardo S R, Carey M (2006). A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell, 23(6): 809–818

DOI PMID

6
Block K M, Wang H, Szabó L Z, Polaske N W, Henchey L K, Dubey R, Kushal S, László C F, Makhoul J, Song Z, Meuillet E J, Olenyuk B Z (2009). Direct inhibition of hypoxia-inducible transcription factor complex with designed dimeric epidithiodiketopiperazine. J Am Chem Soc, 131(50): 18078–18088

DOI PMID

7
Bose D A, Donahue G, Reinberg D, Shiekhattar R, Bonasio R, Berger S L (2017). RNA Binding to CBP Stimulates Histone Acetylation and Transcription. Cell 168, 135–149 e122

8
Bowers E M, Yan G, Mukherjee C, Orry A, Wang L, Holbert M A, Crump N T, Hazzalin C A, Liszczak G, Yuan H, Larocca C, Saldanha S A, Abagyan R, Sun Y, Meyers D J, Marmorstein R, Mahadevan L C, Alani R M, Cole P A (2010). Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol, 17(5): 471–482

DOI PMID

9
Ceschin D G, Walia M, Wenk S S, Duboé C, Gaudon C, Xiao Y, Fauquier L, Sankar M, Vandel L, Gronemeyer H (2011). Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev, 25(11): 1132–1146

DOI PMID

10
Chakravarti D, LaMorte V J, Nelson M C, Nakajima T, Schulman I G, Juguilon H, Montminy M, Evans R M (1996). Role of CBP/P300 in nuclear receptor signalling. Nature, 383(6595): 99–103

DOI PMID

11
Chakravarti D, Ogryzko V, Kao H Y, Nash A, Chen H, Nakatani Y, Evans R M (1999). A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell, 96(3): 393–403

DOI PMID

12
Chan H M, La Thangue N B (2001). p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci, 114(Pt 13): 2363–2373

PMID

13
Chen C C, Carson J J, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler J K (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134(2): 231–243

DOI PMID

14
Chen, J., and Li, Q. (2011). Life and death of transcriptional co-activator p300. Epigenetics: official journal of the DNA Methylation Society 6, 957–961.

15
Chen Y J, Wang Y N, Chang W C (2007). ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression. J Biol Chem, 282(37): 27215–27228

DOI PMID

16
Chevillard-Briet M, Trouche D, Vandel L (2002). Control of CBP co-activating activity by arginine methylation. EMBO J, 21(20): 5457–5466

DOI PMID

17
Chrivia J C, Kwok R P, Lamb N, Hagiwara M, Montminy M R, Goodman R H (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 365(6449): 855–859

DOI PMID

18
Conery A R, Centore R C, Neiss A, Keller P J, Joshi S, Spillane K L, Sandy P, Hatton C, Pardo E, Zawadzke L (2016). Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma. eLife, 5: e10483

19
Contreras-Martos S, Piai A, Kosol S, Varadi M, Bekesi A, Lebrun P, Volkov A N, Gevaert K, Pierattelli R, Felli I C, Tompa P (2017). Linking functions: an additional role for an intrinsically disordered linker domain in the transcriptional coactivator CBP. Sci Rep, 7(1): 4676

DOI PMID

20
Dancy B M, Cole P A (2015). Protein lysine acetylation by p300/CBP. Chem Rev, 115(6): 2419–2452

DOI PMID

21
Das C, Lucia M S, Hansen K C, Tyler J K (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459(7243): 113–117

DOI PMID

22
Das C, Roy S, Namjoshi S, Malarkey C S, Jones D N, Kutateladze T G, Churchill M E, Tyler J K (2014). Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc Natl Acad Sci USA, 111(12): E1072–E1081

DOI PMID

23
Debe s J D, Sebo T J, Lohse C M, Murphy L M, Haugen D A, Tindall D J (2003). p300 in prostate cancer proliferation and progression. Cancer Res, 63(22): 7638–7640

PMID

24
Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D (2013). Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol, 20(9): 1040–1046

DOI PMID

25
Dyson H J, Wright P E (2016). Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J Biol Chem, 291(13): 6714–6722

DOI PMID

26
Eckner R, Ewen M E, Newsome D, Gerdes M, DeCaprio J A, Lawrence J B, Livingston D M (1994). Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev, 8(8): 869–884

DOI PMID

27
Fonte C, Grenier J, Trousson A, Chauchereau A, Lahuna O, Baulieu E E, Schumacher M, Massaad C (2005). Involvement of beta-catenin and unusual behavior of CBP and p300 in glucocorticosteroid signaling in Schwann cells. Proc Natl Acad Sci USA, 102(40): 14260–14265

DOI PMID

28
Fryer C J, Lamar E, Turbachova I, Kintner C, Jones K A (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev, 16(11): 1397–1411

DOI PMID

29
Ghosh S, Taylor A, Chin M, Huang H R, Conery A R, Mertz J A, Salmeron A, Dakle P J, Mele D, Cote A, Jayaram H, Setser J W, Poy F, Hatzivassiliou G, DeAlmeida-Nagata D, Sandy P, Hatton C, Romero F A, Chiang E, Reimer T, Crawford T, Pardo E, Watson V G, Tsui V, Cochran A G, Zawadzke L, Harmange J C, Audia J E, Bryant B M, Cummings R T, Magnuson S R, Grogan J L, Bellon S F, Albrecht B K, Sims R J3rd, Lora J M (2016). Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition. J Biol Chem, 291(25): 13014–13027

DOI PMID

30
Giotopoulos G, Chan W I, Horton S J, Ruau D, Gallipoli P, Fowler A, Crawley C, Papaemmanuil E, Campbell P J, Göttgens B, Van Deursen J M, Cole P A, Huntly B J (2016). The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene, 35(3): 279–289

DOI PMID

31
Girdwood D, Bumpass D, Vaughan O A, Thain A, Anderson L A, Snowden A W, Garcia-Wilson E, Perkins N D, Hay R T (2003). P300 transcriptional repression is mediated by SUMO modification. Mol Cell, 11(4): 1043–1054

DOI PMID

32
Goodman R H, Smolik S (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev, 14(13): 1553–1577

PMID

33
Hamamori Y, Sartorelli V, Ogryzko V, Puri P L, Wu H Y, Wang J Y, Nakatani Y, Kedes L (1999). Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell, 96(3): 405–413

DOI PMID

34
Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan P E, Hay D A, Martinez F O, Al-Mossawi M H, de Wit J, Vecellio M, Wells C, Wordsworth P, Müller S, Knapp S, Bowness P (2015). CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci USA, 112(34): 10768–10773

DOI PMID

35
Hansson M L, Popko-Scibor A E, Saint Just Ribeiro M, Dancy B M, Lindberg M J, Cole P A, Wallberg A E (2009). The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity. Nucleic Acids Res, 37(9): 2996–3006

DOI PMID

36
Heintzman N D, Stuart R K, Hon G, Fu Y, Ching C W, Hawkins R D, Barrera L O, Van Calcar S, Qu C, Ching K A, Wang W, Weng Z, Green R D, Crawford G E, Ren B (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 39(3): 311–318

DOI PMID

37
Hong L, Schroth G P, Matthews H R, Yau P, Bradbury E M (1993). Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem, 268(1): 305–314

PMID

38
Horton S J, Giotopoulos G, Yun H, Vohra S, Sheppard O, Bashford-Rogers R, Rashid M, Clipson A, Chan W I, Sasca D, Yiangou L, Osaki H, Basheer F, Gallipoli P, Burrows N, Erdem A, Sybirna A, Foerster D, Zhao W, Sustic T, Petrunkina Harrison A, Laurenti E, Okosun J, Hodson D, Wright P, Smith K G, Maxwell P, Fitzgibbon J, Du M Q, Adams D J, Huntly B J P (2017). Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nat Cell Biol, 19(9): 1093–1104

DOI PMID

39
Horwitz G A, Zhang K, McBrian M A, Grunstein M, Kurdistani S K, Berk A J (2008). Adenovirus small e1a alters global patterns of histone modification. Science, 321(5892): 1084–1085

DOI PMID

40
Huang W C, Chen C C (2005). Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol, 25(15): 6592–6602

DOI PMID

41
Jang E R, Choi J D, Jeong G, Lee J S (2010). Phosphorylation of p300 by ATM controls the stability of NBS1. Biochem Biophys Res Commun, 397(4): 637–643

DOI PMID

42
Jiang Y, Ortega-Molina A, Geng H, Ying H Y, Hatzi K, Parsa S, McNally D, Wang L, Doane A S, Agirre X, Teater M, Meydan C, Li Z, Poloway D, Wang S, Ennishi D, Scott D W, Stengel K R, Kranz J E, Holson E, Sharma S, Young J W, Chu C S, Roeder R G, Shaknovich R, Hiebert S W, Gascoyne R D, Tam W, Elemento O, Wendel H G, Melnick A M (2017). CREBBP Inactivation Promotes the Development of HDAC3-Dependent Lymphomas. Cancer Discov, 7(1): 38–53

DOI PMID

43
Jin Q, Yu L R, Wang L, Zhang Z, Kasper L H, Lee J E, Wang C, Brindle P K, Dent S Y, Ge K (2011). Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J, 30(2): 249–262

DOI PMID

44
Kalkhoven E (2004). CBP and p300: HATs for different occasions. Biochem Pharmacol, 68(6): 1145–1155

DOI PMID

45
Karanam B, Jiang L, Wang L, Kelleher N L, Cole P A (2006). Kinetic and mass spectrometric analysis of p300 histone acetyltransferase domain autoacetylation. J Biol Chem, 281(52): 40292–40301

DOI PMID

46
Kasper L H, Boussouar F, Ney P A, Jackson C W, Rehg J, van Deursen J M, Brindle P K (2002). A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature, 419(6908): 738–743

DOI PMID

47
Kasper L H, Fukuyama T, Biesen M A, Boussouar F, Tong C, de Pauw A, Murray P J, van Deursen J M, Brindle P K (2006). Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol, 26(3): 789–809

DOI PMID

48
Kawasaki H, Eckner R, Yao T P, Taira K, Chiu R, Livingston D M, Yokoyama K K (1998). Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature, 393(6682): 284–289

DOI PMID

49
Kim T K, Hemberg M, Gray J M, Costa A M, Bear D M, Wu J, Harmin D A, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley P F, Kreiman G, Greenberg M E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465(7295): 182–187

DOI PMID

50
Korzus E (2017). Rubinstein-Taybi Syndrome and Epigenetic Alterations. Adv Exp Med Biol, 978: 39–62

DOI PMID

51
Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705

DOI PMID

52
Kraus W L, Manning E T, Kadonaga J T (1999). Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol Cell Biol, 19(12): 8123–8135

DOI PMID

53
Kung A L, Rebel V I, Bronson R T, Ch’ng L E, Sieff C A, Livingston D M, Yao T P (2000). Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev, 14(3): 272–277

PMID

54
Kung A L, Zabludoff S D, France D S, Freedman S J, Tanner E A, Vieira A, Cornell-Kennon S, Lee J, Wang B, Wang J, Memmert K, Naegeli H U, Petersen F, Eck M J, Bair K W, Wood A W, Livingston D M (2004). Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell, 6(1): 33–43

DOI PMID

55
Kuo H Y, Chang C C, Jeng J C, Hu H M, Lin D Y, Maul G G, Kwok R P, Shih H M (2005). SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci USA, 102(47): 16973–16978

DOI PMID

56
Kwok R P, Lundblad J R, Chrivia J C, Richards J P, Bächinger H P, Brennan R G, Roberts S G, Green M R, Goodman R H (1994). Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature, 370(6486): 223–226

DOI PMID

57
Lasko L M, Jakob C G, Edalji R P, Qiu W, Montgomery D, Digiammarino E L, Hansen T M, Risi R M, Frey R, Manaves V, Shaw B, Algire M, Hessler P, Lam L T, Uziel T, Faivre E, Ferguson D, Buchanan F G, Martin R L, Torrent M, Chiang G G, Karukurichi K, Langston J W, Weinert B T, Choudhary C, de Vries P, Van Drie J H, McElligott D, Kesicki E, Marmorstein R, Sun C, Cole P A, Rosenberg S H, Michaelides M R, Lai A, Bromberg K D (2017). Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature, 550(7674): 128–132

PMID

58
Lau O D, Kundu T K, Soccio R E, Ait-Si-Ali S, Khalil E M, Vassilev A, Wolffe A P, Nakatani Y, Roeder R G, Cole P A (2000). HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell, 5(3): 589–595

DOI PMID

59
Lee Y H, Coonrod S A, Kraus W L, Jelinek M A, Stallcup M R (2005). Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci USA, 102(10): 3611–3616

DOI PMID

60
Liu X, Wang L, Zhao K, Thompson P R, Hwang Y, Marmorstein R, Cole P A (2008). The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 451(7180): 846–850

DOI PMID

61
Madison D L, Yaciuk P, Kwok R P, Lundblad J R (2002). Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem, 277(41): 38755–38763

DOI PMID

62
Martincorena I, Campbell P J (2015). Somatic mutation in cancer and normal cells. Science, 349(6255): 1483–1489

DOI PMID

63
Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol, 2(8): 599–609

DOI PMID

64
Michaelides M R, Kluge A, Patane M, Van Drie J H, Wang C, Hansen T M, Risi R M, Mantei R, Hertel C, Karukurichi K, Nesterov A, McElligott D, de Vries P, Langston J W, Cole P A, Marmorstein R, Liu H, Lasko L, Bromberg K D, Lai A, Kesicki E A (2017). Discovery of Spiro Oxazolidinediones as Selective, Orally Bioavailable Inhibitors of p300/CBP Histone Acetyltransferases. ACS Med Chem Lett, 9(1): 28–33

DOI PMID

65
Morin R D, Mendez-Lago M, Mungall A J, Goya R, Mungall K L, Corbett R D, Johnson N A, Severson T M, Chiu R, Field M, Jackman S, Krzywinski M, Scott D W, Trinh D L, Tamura-Wells J, Li S, Firme M R, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer I M, Zhao E Y, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli J J, Ben-Neriah S, Meissner B, Woolcock B, Boyle M, McDonald H, Tam A, Zhao Y, Delaney A, Zeng T, Tse K, Butterfield Y, Birol I, Holt R, Schein J, Horsman D E, Moore R, Jones S J, Connors J M, Hirst M, Gascoyne R D, Marra M A (2011). Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature, 476(7360): 298–303

DOI PMID

66
Mullighan C G, Zhang J, Kasper L H, Lerach S, Payne-Turner D, Phillips L A, Heatley S L, Holmfeldt L, Collins-Underwood J R, Ma J, Buetow K H, Pui C H, Baker S D, Brindle P K, Downing J R (2011). CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature, 471(7337): 235–239

DOI PMID

67
Nguyen U T, Bittova L, Müller M M, Fierz B, David Y, Houck-Loomis B, Feng V, Dann G P, Muir T W (2014). Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods, 11(8): 834–840

DOI PMID

68
Ogryzko V V, Schiltz R L, Russanova V, Howard B H, Nakatani Y (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87(5): 953–959

DOI PMID

69
Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 93(9): 2771–2779

PMID

70
Park S, Martinez-Yamout M A, Dyson H J, Wright P E (2013). The CH2 domain of CBP/p300 is a novel zinc finger. FEBS Lett, 587(16): 2506–2511

DOI PMID

71
Park S, Stanfield R L, Martinez-Yamout M A, Dyson H J, Wilson I A, Wright P E (2017). Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Natl Acad Sci USA, 114(27): E5335–E5342

DOI PMID

72
Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper L H, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty V V, Mullighan C G, Gaidano G, Rabadan R, Brindle P K, Dalla-Favera R (2011). Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature, 471(7337): 189–195

DOI PMID

73
Peifer M, Fernández-Cuesta L, Sos M L, George J, Seidel D, Kasper L H, Plenker D, Leenders F, Sun R, Zander T, Menon R, Koker M, Dahmen I, Müller C, Di Cerbo V, Schildhaus H U, Altmüller J, Baessmann I, Becker C, de Wilde B, Vandesompele J, Böhm D, Ansén S, Gabler F, Wilkening I, Heynck S, Heuckmann J M, Lu X, Carter S L, Cibulskis K, Banerji S, Getz G, Park K S, Rauh D, Grütter C, Fischer M, Pasqualucci L, Wright G, Wainer Z, Russell P, Petersen I, Chen Y, Stoelben E, Ludwig C, Schnabel P, Hoffmann H, Muley T, Brockmann M, Engel-Riedel W, Muscarella L A, Fazio V M, Groen H, Timens W, Sietsma H, Thunnissen E, Smit E, Heideman D A, Snijders P J, Cappuzzo F, Ligorio C, Damiani S, Field J, Solberg S, Brustugun O T, Lund-Iversen M, Sänger J, Clement J H, Soltermann A, Moch H, Weder W, Solomon B, Soria J C, Validire P, Besse B, Brambilla E, Brambilla C, Lantuejoul S, Lorimier P, Schneider P M, Hallek M, Pao W, Meyerson M, Sage J, Shendure J, Schneider R, Büttner R, Wolf J, Nürnberg P, Perner S, Heukamp L C, Brindle P K, Haas S, Thomas R K (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet, 44(10): 1104–1110

DOI PMID

74
Perissi V, Dasen J S, Kurokawa R, Wang Z, Korzus E, Rose D W, Glass C K, Rosenfeld M G (1999). Factor-specific modulation of CREB-binding protein acetyltransferase activity. Proc Natl Acad Sci USA, 96(7): 3652–3657

DOI PMID

75
Petrij F, Giles R H, Dauwerse H G, Saris J J, Hennekam R C, Masuno M, Tommerup N, van Ommen G J, Goodman R H, Peters D J (1995). Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376(6538): 348–351

DOI PMID

76
Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, Olzscha H, Monteiro O, Martin S, Philpott M, Tumber A, Filippakopoulos P, Yapp C, Wells C, Che K H, Bannister A, Robson S, Kumar U, Parr N, Lee K, Lugo D, Jeffrey P, Taylor S, Vecellio M L, Bountra C, Brennan P E, O’Mahony A, Velichko S, Müller S, Hay D, Daniels D L, Urh M, La Thangue N B, Kouzarides T, Prinjha R, Schwaller J, Knapp S (2015). Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Res, 75(23): 5106–5119

DOI PMID

77
Plotnikov A N, Yang S, Zhou T J, Rusinova E, Frasca A, Zhou M M (2014). Structural insights into acetylated-histone H4 recognition by the bromodomain-PHD finger module of human transcriptional coactivator CBP. Structure, 22(2): 353–360

DOI PMID

78
Rack J G M, Lutter T, Kjæreng Bjerga G E, Guder C, Ehrhardt C, Värv S, Ziegler M, Aasland R (2014). The PHD finger of p300 influences its ability to acetylate histone and non-histone targets. J Mol Biol, 426(24): 3960–3972

DOI PMID

79
Radhakrishnan I, Pérez-Alvarado G C, Parker D, Dyson H J, Montminy M R, Wright P E (1997). Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell, 91(6): 741–752

DOI PMID

80
Rebel V I, Kung A L, Tanner E A, Yang H, Bronson R T, Livingston D M (2002). Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA, 99(23): 14789–14794

DOI PMID

81
Roe J S, Mercan F, Rivera K, Pappin D J, Vakoc C R (2015). BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia. Mol Cell, 58(6): 1028–1039

DOI PMID

82
Rojas J R, Trievel R C, Zhou J, Mo Y, Li X, Berger S L, Allis C D, Marmorstein R (1999). Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature, 401(6748): 93–98

DOI PMID

83
Roth S Y, Allis C D (1996). Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell, 87(1): 5–8

DOI PMID

84
Saint Just Ribeiro M, Hansson M L, Wallberg A E (2007). A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem J, 404(2): 289–298

DOI PMID

85
Sanchez R, Zhou M M (2011). The PHD finger: a versatile epigenome reader. Trends Biochem Sci, 36(7): 364–372

PMID

86
Schiltz R L, Mizzen C A, Vassilev A, Cook R G, Allis C D, Nakatani Y (1999). Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem, 274(3): 1189–1192

DOI PMID

87
Shi X, Hong T, Walter K L, Ewalt M, Michishita E, Hung T, Carney D, Peña P, Lan F, Kaadige M R, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns B R, Ayer D E, Kutateladze T G, Shi Y, Côté J, Chua K F, Gozani O (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 442(7098): 96–99

DOI PMID

88
Shogren-Knaak M, Ishii H, Sun J M, Pazin M J, Davie J R, Peterson C L (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science, 311(5762): 844–847

DOI PMID

89
Solomon B D, Bodian D L, Khromykh A, Mora G G, Lanpher B C, Iyer R K, Baveja R, Vockley J G, Niederhuber J E (2015). Expanding the phenotypic spectrum in EP300-related Rubinstein-Taybi syndrome. Am J Med Genet A, 167A(5): 1111–1116

DOI PMID

90
Stein R W, Corrigan M, Yaciuk P, Whelan J, Moran E (1990). Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol, 64(9): 4421–4427

PMID

91
Szerlong H J, Prenni J E, Nyborg J K, Hansen J C (2010). Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. J Biol Chem, 285(42): 31954–31964

DOI PMID

92
Tanaka Y, Naruse I, Hongo T, X u M, Nakahata T, Maekawa T, Ishii S (2000). Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev, 95(1-2): 133–145

DOI PMID

93
Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroishi T, Ishii S (1997). Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci USA, 94(19): 10215–10220

DOI PMID

94
Tang Z, Chen W Y, Shimada M, Nguyen U T, Kim J, Sun X J, Sengoku T, McGinty R K, Fernandez J P, Muir T W, Roeder R G (2013). SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell, 154(2): 297–310

DOI PMID

95
Tessarz P, Kouzarides T (2014). Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol, 15(11): 703–708

DOI PMID

96
Thompson P R, Kurooka H, Nakatani Y, Cole P A (2001). Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J Biol Chem, 276(36): 33721–33729

DOI PMID

97
Thompson P R, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder R G, Wong J, Levrero M, Sartorelli V, Cotter R J, Cole P A (2004). Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol, 11(4): 308–315

DOI PMID

98
Trievel R C, Rojas J R, Sterner D E, Venkataramani R N, Wang L, Zhou J, Allis C D, Berger S L, Marmorstein R (1999). Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA, 96(16): 8931–8936

DOI PMID

99
Tse C, Sera T, Wolffe A P, Hansen J C (1998). Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol, 18(8): 4629–4638

DOI PMID

100
Vempati R K, Jayani R S, Notani D, Sengupta A, Galande S, Haldar D (2010). p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem, 285(37): 28553–28564

DOI PMID

101
Visel A, Blow M J, Li Z, Zhang T, Akiyama J A, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin E M, Pennacchio L A (2009). ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 457(7231): 854–858

DOI PMID

102
Vo N, Goodman R H (2001). CREB-binding protein and p300 in transcriptional regulation. J Biol Chem, 276(17): 13505–13508

DOI PMID

103
Wan W, You Z, Xu Y, Zhou L, Guan Z, Peng C, Wong C C L, Su H, Zhou T, Xia H (2017). mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. Molecular cell 68, 323–335 e326.

104
Wang F, Marshall C B, Ikura M (2013a). Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci, 70(21): 3989–4008

DOI PMID

105
Wang Q E, Han C, Zhao R, Wani G, Zhu Q, Gong L, Battu A, Racoma I, Sharma N, Wani A A (2013b). p38 MAPK- and Akt-mediated p300 phosphorylation regulates its degradation to facilitate nucleotide excision repair. Nucleic Acids Res, 41(3): 1722–1733

DOI PMID

106
Wang Z, Zang C, Cui K, Schones D E, Barski A, Peng W, Zhao K (2009). Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell, 138(5): 1019–1031

DOI PMID

107
Whyte P, Williamson N M, Harlow E (1989). Cellular targets for transformation by the adenovirus E1A proteins. Cell, 56(1): 67–75

DOI PMID

108
Xu L, Cheng A, Huang M, Zhang J, Jiang Y, Wang C, Li F, Bao H, Gao J, Wang N, Liu J, Wu J, Wong C C L, Ruan K (2017). Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein. FEBS J, 284(20): 3422–3436

DOI PMID

109
Xu W, Chen H, Du K, Asahara H, Tini M, Emerson B M, Montminy M, Evans R M (2001). A transcriptional switch mediated by cofactor methylation. Science, 294(5551): 2507–2511

DOI PMID

110
Yao T P, Oh S P, Fuchs M, Zhou N D, Ch’ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 93(3): 361–372

DOI PMID

111
Yee S P, Branton P E (1985). Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology, 147(1): 142–153

DOI PMID

112
Yuan L W, Soh J W, Weinstein I B (2002). Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim Biophys Acta, 1592(2): 205–211

DOI PMID

113
Zeng L, Zhang Q, Gerona-Navarro G, Moshkina N, Zhou M M (2008). Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300. Structure, 16(4): 643–652

DOI PMID

114
Zhang J, Vlasevska S, Wells V A, Nataraj S, Holmes A B, Duval R, Meyer S N, Mo T, Basso K, Brindle P K, Hussein S, Dalla-Favera R, Pasqualucci L (2017a). The CREBBP Acetyltransferase Is a Haploinsufficient Tumor Suppressor in B-cell Lymphoma. Cancer Discov, 7(3): 322–337

DOI PMID

115
Zhang R, Erler J, Langowski J (2017b). Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter-nucleosome Interaction. Biophys J, 112(3): 450–459

DOI PMID

116
Zhong J, Ding L, Bohrer L R, Pan Y, Liu P, Zhang J, Sebo T J, Karnes R J, Tindall D J, van Deursen J, Huang H (2014). p300 acetyltransferase regulates androgen receptor degradation and PTEN-deficient prostate tumorigenesis. Cancer Res, 74(6): 1870–1880

DOI PMID

117
Zhu P, Li G (2016). Structural insights of nucleosome and the 30-nm chromatin fiber. Curr Opin Struct Biol, 36: 106–115

DOI PMID

118
Zucconi B E, Luef B, Xu W, Henry R A, Nodelman I M, Bowman G D, Andrews A J, Cole P A (2016). Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112. Biochemistry, 55(27): 3727–3734

DOI PMID

Outlines

/