REVIEW

Siberian plants: untapped repertoire of bioactive endosymbionts

  • Syed Baker , 1 ,
  • Svetlana V. Prudnikova 2 ,
  • Tatiana Volova 3,4
Expand
  • 1. Laboratory of Biotechnology of New Materials, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russia
  • 2. Siberian Federal University, School of Fundamental Biology and Biotechnology, 79 Svobodny pr., Krasnoyarsk, 660041, Russia
  • 3. Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50/50 Akademgorodok, Krasnoyarsk 660036, Russia
  • 4. Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russia

Received date: 29 Nov 2017

Accepted date: 15 Mar 2018

Published date: 31 Jul 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

BACKGROUND: Endosymbionts are microorganisms present in all plant species, and constitute the subject of interest among the scientific community. These symbionts have gained considerable attention in recent years, owing to their emerging biological roles. Global challenges, such as antimicrobial resistance, treatment of infectious diseases such as HIV and tuberculosis, cancer, and many genetic disorders, exist. Endosymbionts can help address these challenges by secreting value-added bioactive compounds with various activities.

OBJECTIVE: Herein, we describe the importance of plants inhabiting Siberian niches. These plants are considered to be among the least studied organisms in the plant kingdom worldwide. Barcoding these plants can be of interest for exploring bioactive endosymbionts possessing myriad biological properties.

METHODS: A systematic survey of relevant scientific reports was conducted using the PubMed search engine. The reports were analyzed, and compiled to draft this review.

RESULTS: The literature survey on Siberian plants regarding endosymbionts included a few reports, since extremely few exploratory studies have been conducted on the plants in these regions. Studies on the endosymbionts of these plants are highly valuable, as they report potent endosymbionts possessing numerous biological properties. Based on these considerations, this review aims to create awareness among the global scientific community working on related areas.

CONCLUSION: This review could provide the basis for barcoding novel endosymbionts of Siberian plants and their ecological importance, which can be exploited in various sectors. The main purpose of this review is to create awareness of Siberian plants, which are among the least studied organisms in the plant kingdom, with respect to endosymbionts, among the scientific community.

Cite this article

Syed Baker , Svetlana V. Prudnikova , Tatiana Volova . Siberian plants: untapped repertoire of bioactive endosymbionts[J]. Frontiers in Biology, 2018 , 13(3) : 157 -167 . DOI: 10.1007/s11515-018-1483-5

Acknowledgments

The authors are grateful to the Ministry of Education and Science of the Russian Federation for providing funding under the 5–100: Russian Academic Excellence Project. The authors are grateful for the facilities provided by the Siberian Federal University.

Compliance with ethics guidelines

Syed Baker, Svetlana V. Prudnikova and Tatiana Volova declare that they no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Abdou R, Scherlach K, Dahse H M, Sattler I, Hertweck C (2010). Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry, 71(1): 110–116

DOI PMID

2
Abhijeet Singh Y M (2014). Understanding the biodiversity and biological applications of endophytic fungi. J Microb Biochem Technol, s8(01): 004

DOI

3
Alm T (2004). Ethnobotany of Rhodiola rosea (Crassulaceae) in Norway. SIDA Contrib Bot, 21: 321–344

4
Amna T, Puri S C, Verma V, Sharma J P, Khajuria R K, Musarrat J, Spiteller M, Qazi G N (2006). Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol, 52(3): 189–196

DOI PMID

5
Arnold A E (2005). Diversity and ecology of fungal endophytes in tropical forests. 49–68. In: Deshmukh S (Ed.). Current Trends in Mycological Research. New Delhi, Oxford & IBH Publishing Co. Pvt. Ltd.

6
Azevedo J L, Maccheroni W Jr, Pereira J O, De Araújo W L (2000). Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron J Biotechnol, 3(1): 40–65

DOI

7
Baker S, Kavitha K S, Chinnappa H, Rao Y, Rakshith D, Harini B P, Kumar K, Satish S (2015). Bacterial endo-symbiont inhabiting Tridax procumbens L. and their antimicrobial potential. Zhongguo Shengwuzhipinxue Zazhi, 2015(2): 1473–1476

8
Baker S, Rakshith D, Kavitha K S, Santosh P, Kavitha H U, Rao Y, Satish S (2013). Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts, 3: 111–117

PMID

9
Baker S, Satish S (2012). Endophytes: Natural warehouse of bioactive compounds. Drug Invent Today, 4: 548–553

10
Baker S, Satish S (2015). Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim Acta A Mol Biomol Spectrosc, 150: 691–695

DOI PMID

11
Banerjee D, Strobel G A, Booth E, Geary B, Sears J, Spakowicz D, Busse S (2010). An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere, 1: 229–240

12
Bangera M G, Thomashow L S (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol, 181(10): 3155–3163

PMID

13
Bayoumi M T, Shaer H M E (1994). Impact of halophytes on animal health and nutrition. Halophytes as a resource for livestock and for rehabilitation of degraded lands Tasks for vegetation science, 267–272.

14
Bertozzi S, Padian N S, Wegbreit J, DeMaria L M, Feldman B, Gayle H, Gold J, Grant R, Isbell M T (2006). HIV/AIDS Prevention and Treatment. In: Dis Control Priorities Dev Ctries. 331–370.

15
Castillo U F, Strobel G A, Ford E J, Hess W M, Porter H, Jensen J B, Albert H, Robison R, Condron M A M, Teplow D B, Stevens D, Yaver D (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology, 148(Pt 9): 2675–2685

DOI PMID

16
Chikhi I, Allali H, El Amine Dib M, Medjdoub H, Tabti B (2014). Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin-induced diabetic rats. Asian Pac J Trop Dis, 4(3): 181–184

DOI

17
Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol, 71(4): 1685–1693

DOI PMID

18
Deshmukh S K, Mishra P D, Kulkarni-Almeida A, Verekar S, Sahoo M R, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009). Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers, 6(5): 784–789

DOI PMID

19
Dhankhar S, Dhankhar S, Yadav J P (2013). Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem, 9(4): 624–632

DOI PMID

20
Ding L, Münch J, Goerls H, Maier A, Fiebig H H, Lin W H, Hertweck C (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett, 20(22): 6685–6687

DOI PMID

21
Dompeipen E J, Srikandace Y, Suharso W P, Cahyana H, Simanjuntak P (2011). Potential endophytic microbes selection for antidiabetic bioactive compounds production. Asian J Biochem, 6(6): 465–471

DOI

22
Dragoeva A P, Koleva V P, Nanova Z D, Georgiev B P (2015). Allelopathic effects of Adonis vernalis L.: Root growth inhibition and cytogenetic alterations. J Agric Chem Environ, 4: 48–55

23
Ezra D, Castillo U F, Strobel G A, Hess W M, Porter H, Jensen J B, Condron M A, Teplow D B, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology, 150(Pt 4): 785–793

DOI PMID

24
Farrar K, Bryant D, Cope-Selby N (2014). Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J, 12(9): 1193–1206

DOI PMID

25
Franke D, Hinz K, Reichert C (2004). Geology of the East Siberian Sea, Russian Arctic, from seismic images: Structures, evolution, and implications for the evolution of the Arctic Ocean Basin. J Geophys Res B Solid Earth, 109(7): 1–19

26
Gaiero J R, McCall C A, Thompson K A, Day N J, Best A S, Dunfield K E (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot, 100(9): 1738–1750

DOI PMID

27
Govindappa M, Channabasava R, Sowmya D V, Meenakshi J, Shreevidya M R, Lavanya A, Santoyo G, Sadananda T S (2011). Phytochemical screening, antimicrobial and in vitro anti-inflammatory activity of endophytic extracts from Loranthus sp. Pharmacogn J, 3(25): 82–90

DOI

28
Guan S, Grabley S, Groth I, Lin W, Christner A, Guo D, Sattler I (2005). Structure determination of germacrane-type sesquiterpene alcohols from an endophyte Streptomyces griseus subsp. Magn Reson Chem, 43(12): 1028–1031

DOI PMID

29
Guimarães D O, Borges W S, Kawano C Y, Ribeiro P H, Goldman G H, Nomizo A, Thiemann O H, Oliva G, Lopes N P, Pupo M T (2008). Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia. FEMS Immunol Med Microbiol, 52(1): 134–144

DOI PMID

30
Guo B, Dai J R, Ng S, Huang Y, Leong C, Ong W, Carté B K (2000). Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod, 63(5): 602–604

DOI PMID

31
Hale I L, Broders K, Iriarte G (2014). A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Front Plant Sci, 5: 492

DOI PMID

32
Hardoim P R, van Overbeek L S, Berg G, Pirttilä A M, Compant S, Campisano A, Döring M, Sessitsch A (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev, 79(3): 293–320

DOI PMID

33
Hilarino M P A, Silveira F A O, Oki Y, Rodrigues L, Santos J C, Correa-Junior A, Fernandes G W, Rosa C A (2011). Distribution of the endophytic fungi community in leaves of Bauhinia brevipes (Fabaceae). Acta Bot Bras, 25(4): 815–821

DOI

34
Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K, Takahashi Y, Ōmura S, Shiomi K (2011). Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T). J Antibiot (Tokyo), 64(4): 303–307

DOI PMID

35
Karmakar R, Kumar S, Prakash H S (2013). Fungal endophytes from Garcinia species. Int J Pharm Pharm Sci, 5: 889–897

36
Kavitha K, Baker S, Rakshith D, Kavitha H, Yashwantha Rao H, Harini B, Satish S (2013). Plants as Green source towards synthesis of nanoparticles. Int Res J Biol Sci, 2: 66–76

37
Kharwar R N, Verma V C, Strobel G, Ezra D (2008). The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci, 95: 228–233

38
Kim D M, Nam B W (2006). Extracts and essential oil of Ledum palustre L. leaves and their antioxidant and antimicrobial activities. Prev Nutr Food Sci, 11(2): 100–104

DOI

39
Kokoska L, Janovska D (2009). Chemistry and pharmacology of Rhaponticum carthamoides: a review. Phytochemistry, 70(7): 842–855

DOI PMID

40
Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T (2002). Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol, 82(1): 51–53

DOI PMID

41
Kusari S, Hertweck C, Spiteller M (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol, 19(7): 792–798

DOI PMID

42
Li J Y, Harper J K, Grant D M, Tombe B O, Bashyal B, Hess W M, Strobel G A (2001). Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry, 56(5): 463–468

DOI PMID

43
Liang J, Chen J, Tan Z, Peng J, Zheng X, Nishiura K, Ng J, Wang Z, Wang D, Chen Z, Liu L (2013). Extracts of medicinal herb Sanguisorba officinalisinhibit the entry of human immunodeficiency virus type one. Yao Wu Shi Pin Fen Xi, 21(4): S52–S58

PMID

44
Lotocka B, Geszprych A (2004). Anatomy of the vegetative organs and secretory structures of Rhaponticum carthamoides (Asteraceae). Bot J Linn Soc, 144(2): 207–233

DOI

45
Maji A, Banerji P (2015). Chelidonium majus L.(Greater celandine)–A review on its phytochemical and therapeutic perspectives. Int J Herb Med, 3(1): 10–27

DOI

46
Marchev A S, Dinkova-Kostova A T, Gyrgy Z, Mirmazloum I, Aneva I Y, Georgiev M I (2016). Rhodiola rosea L.: from golden root to green cell factories. Phytochem Rev, 15(4): 515–536

DOI

47
Miller C M, Miller R V, Garton-Kenny D, Redgrave B, Sears J, Condron M M, Teplow D B, Strobel G A (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol, 84(6): 937–944

DOI PMID

48
Nadeem M, Ram M, Alam P, Ahmad M M, Mohammad A, Al-Qurainy F, Khan S, Abdin M Z (2012). Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res, 6: 2493–2499

49
Nair D N, Padmavathy S (2014). Impact of endophytic microorganisms on plants, environment and humans. Sci World J, 2014: 250693

DOI PMID

50
Newman D J, Cragg G M (2015). Endophytic and epiphytic microbes as “sources” of bioactive agents. Front Chem, 3: 34

DOI PMID

51
Opletal L, Sovova M, Dittrich M, Solich P, Dvorak J, Kratky F, Cerovsky J, Hofbauer J (1997). Phytotherapeutic aspects of diseases of the circulatory system. 6. Leuzea carthamoides (WILLD.).

52
Pan J H, Chen Y, Huang Y H, Tao Y W, Wang J, Li Y, Peng Y, Dong T, Lai X M, Lin Y C (2011). Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res, 34(7): 1177–1181

DOI PMID

53
Panossian A, Wikman G, Sarris J (2010). Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 17(7): 481–493

DOI PMID

54
Partida-Martínez L P, Heil M (2011). The microbe-free plant: fact or artifact? Front Plant Sci, 2: 100

DOI PMID

55
Popov S V, Popova G Y, Nikolaeva S Y, Golovchenko V V, Ovodova R G (2005). Immunostimulating activity of pectic polysaccharide from Bergenia crassifolia (L.) Fritsch. Phytother Res, 19(12): 1052– 1056

DOI PMID

56
Powledge T M (2011). Behavioral epigenetics: how nurture shapes Nature. Bioscience, 61(8): 588–592

DOI

57
Qin J C, Zhang Y M, Gao J M, Bai M S, Yang S X, Laatsch H, Zhang A L (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett, 19(6): 1572–1574

DOI PMID

58
Raiklin E (2008). The Chinese challenge to Russia in Siberia and the Russian Far East. J Soc Polit Econ Stud, 33: 145–204

59
Rather M A, Mansoor S, Bhat Z S, Amin S (2016). Evaluation of antimicrobial and antioxidant activities of Swertia petiolata. Adv Biomed Pharma, 5: 272–279

60
Rodrigues-Heerklotz K F, Drandarov K, Heerldotz J, Hesse M, Werner C (2001). Guignardic acid, a novel type of secondary metabolite produced by the endophytic fungus Guignardia sp.: isolation, structure elucidation, and asymmetric synthesis. Helv Chim Acta, 84(12): 3766–3772

DOI

61
Rodriguez R J, White J F J Jr, Arnold A E, Redman R S (2009). Fungal endophytes: diversity and functional roles. New Phytol, 182(2): 314–330

DOI PMID

62
Saikkonen K, Wäli P, Helander M, Faeth S H (2004). Evolution of endophyte-plant symbioses. Trends Plant Sci, 9(6): 275–280

DOI PMID

63
Satish S, Raveesha K A, Janardhana G R (1999). Antibacterial activity of plant extracts on phytopathogenic Xanthomonas campestris pathovars. Lett Appl Microbiol, 28(2): 145–147

DOI

64
Schulz B, Boyle C (2006). What are Endophytes? 9:1–14.

65
Schulz B, Haas S, Junker C, Andree N, Schobert M (2015). Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci, 109: 39–45

66
Shikov A N, Pozharitskaya O N, Makarova M N, Makarov V G, Wagner H (2014). Bergenia crassifolia (L.) Fritsch--pharmacology and phytochemistry. Phytomedicine, 21(12): 1534–1542

DOI PMID

67
Singh S B, Jayasuriya H, Dewey R, Polishook J D, Dombrowski A W, Zink D L, Guan Z, Collado J, Platas G, Pelaez F, Felock P J, Hazuda D J (2003). Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J Ind Microbiol Biotechnol, 30(12): 721–731

DOI PMID

68
Song Y C, Li H, Ye Y H, Shan C Y, Yang Y M, Tan R X (2004). Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett, 241(1): 67–72

DOI PMID

69
Srobel G, Li J Y, Sugawara F, Koshino H, Harper J, Hess W M (1999). Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology, 145(Pt 12): 3557–3564

DOI PMID

70
Stadler M, Schulz B (2009). High energy biofuel from endophytic fungi? Trends Plant Sci, 14(7): 353–355

DOI PMID

71
Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995). The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod, 58(9): 1315–1324

DOI PMID

72
Strobel G, Daisy B (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev, 67(4): 491–502

DOI PMID

73
Strobel G, Daisy B, Castillo U, Harper J (2004). Natural products from endophytic microorganisms. J Nat Prod, 67(2): 257–268

DOI PMID

74
Svidén G A, Tham K, Borell L (2010). Involvement in everyday life for people with a life threatening illness. Palliat Support Care, 8(3): 345–352

DOI PMID

75
Syed B, Nagendra Prasad M N, Mohan Kumar K, Dhananjaya B L, Satish S (2017). Endo-symbiont mediated synthesis of gold nanobactericides and their activity against human pathogenic bacteria. Environ Toxicol Pharmacol, 52: 143–149

DOI PMID

76
Syed B, Nagendra Prasad M N, Satish S (2016). Synthesis and characterization of silver nanobactericides produced by Aneurinibacillus migulanus 141, a novel endophyte inhabiting Mimosa pudica L. Arab J Chem,

DOI

77
Tchebakova N M, Kuzmina N A, Parfenova E I, Senashova V A, Kuzmin S R (2016). Potential climate-induced distributions of Lophodermium needle cast across central Siberia in the 21 century. Web Ecol, 16(1): 37–39

DOI

78
Turner J, Bracegirdle T J, Phillips T, Marshall G J, Hosking J S (2012). An initial assessment of antarctic sea ice extent in the CMIP5 models. J Clim, 26(5): 1473–1484

DOI

79
Vdovitchenko M Y, Kuzovkina I N, Paetz C, Schneider B (2007). Formation of phenolic compounds in the roots of Hedysarum theinum cultured in vitro. Russ J Plant Physiol, 54(4): 536–544

DOI

80
Xia Y, DeBolt S, Dreyer J, Scott D, Williams M A (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci, 6: 490

DOI PMID

81
Xue S Y, Li Z Y, Zhi H J, Sun H F, Zhang L Z, Guo X Q, Qin X M (2012). Metabolic finger printing investigation of Tussilago farfara L. by GC-MS and multivariate data analysis. Biochem Syst Ecol, 41: 6–12

DOI

82
Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D (2012). Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci USA, 109(10): 4008–4013

DOI PMID

83
You Y H, Yoon H, Kang S M, Shin J H, Choo Y S, Lee I J, Lee J M, Kim J G (2012). Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol, 22(11): 1549–1556

DOI PMID

84
Zabalgogeazcoa (2008). Fungal endophytes and their interactions with plant pathogens. Span J Agric Res 6: 138–146

Outlines

/