RESEARCH ARTICLE

Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system

  • Awoyemi A. AWOFALA , 1,2
Expand
  • 1. School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
  • 2. Department of Biological Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria

Received date: 14 Feb 2011

Accepted date: 01 Apr 2011

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Animals exhibit behavioral differences in their sensitivity to ethanol, a trait that is at least in part due to genetic predispositions. This study has implicated a large neuronal protein involving Highwire, a Drosophila E3 ubiquitin ligase (Hiw, a homolog of Pam, a protein associated with Myc found in humans) in acute sensitivity to ethanol sedation. Flies lacking Hiw were hypersensitive to the sedating effect of ethanol whereas those overexpressing Hiw showed decreased sensitivity to ethanol. Furthermore, RNAi functional knockdown of Hiw in adult neurons or ellipsoid body neurons showed increased sensitivity to ethanol sedation. None of these manipulations of the hiw gene caused changes in the rate of ethanol absorption and/or metabolism. These results suggest a previously unknown role for this highly conserved gene in regulating the behavioral responses to an addictive drug.

Cite this article

Awoyemi A. AWOFALA . Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system[J]. Frontiers in Biology, 2011 , 6(5) : 414 -421 . DOI: 10.1007/s11515-011-1144-4

Acknowledgments

This work was supported by a fellowship from Tai Solarin University of Education. The author reports no conflicts of interest.
1
Berger K H, Heberlein U, Moore M S (2004). Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin Exp Res, 28(10): 1469–1480

DOI PMID

2
Cheng Y, Endo K, Wu K, Rodan A R, Heberlein U, Davis R L (2001). Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol. Cell, 105(6): 757–768

DOI PMID

3
Collins C A, Wairkar Y P, Johnson S L, DiAntonio A (2006). Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron, 51(1): 57–69

DOI PMID

4
DiAntonio A, Haghighi A P, Portman S L, Lee J D, Amaranto A M, Goodman C S (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature, 412(6845): 449–452

DOI PMID

5
Han S, Witt R M, Santos T M, Polizzano C, Sabatini B L, Ramesh V (2008). Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal, 20(6): 1084–1091

DOI PMID

6
Hiraishi H, Okada M, Ohtsu I, Takagi H (2009). A functional analysis of the yeast ubiquitin ligase Rsp5: the involvement of the ubiquitin-conjugating enzyme Ubc4 and poly-ubiquitination in ethanol-induced down-regulation of targeted proteins. Biosci Biotechnol Biochem, 73(10): 2268–2273

DOI PMID

7
McCabe B D, Hom S, Aberle H, Fetter R D, Marques G, Haerry T E, Wan H, O’Connor M B, Goodman C S, Haghighi A P (2004). Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron, 41(6): 891–905

DOI PMID

8
Miguel-Hidalgo J J (2009). The role of glial cells in drug abuse. Curr Drug Abuse Rev, 2(1): 76–82

DOI PMID

9
Moore M S, DeZazzo J, Luk A Y, Tully T, Singh C M, Heberlein U (1998). Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell, 93(6): 997–1007

DOI PMID

10
Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm A D, Jin Y (2005). Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell, 120(3): 407–420

DOI PMID

11
Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L (2009). Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem, 16(5): 289–295

DOI PMID

12
Pierre S C, Häusler J, Birod K, Geisslinger G, Scholich K (2004). PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. EMBO J, 23(15): 3031–3040

DOI PMID

13
Renn S C P, Armstrong J D, Yang M, Wang Z, An X, Kaiser K, Taghert P H (1999). Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol, 41(2): 189–207

DOI PMID

14
Rodan A R, Kiger J A Jr, Heberlein U (2002). Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J Neurosci, 22(21): 9490–9501

PMID

15
Schuckit M A, Gold E O (1988). A simultaneous evaluation of multiple markers of ethanol/placebo challenges in sons of alcoholics and controls. Arch Gen Psychiatry, 45(3): 211–216

PMID

16
Schuckit M A, Tsuang J W, Anthenelli R M, Tipp J E, Nurnberger J I Jr (1996). Alcohol challenges in young men from alcoholic pedigrees and control families: a report from the COGA project. J Stud Alcohol, 57(4): 368–377

PMID

17
Sharma P, Asztalos Z, Ayyub C, de Bruyne M, Dornan A J, Gomez-Hernandez A, Keane J, Killeen J, Kramer S, Madhavan M, Roe H, Sherkhane P D, Siddiqi K, Silva E, Carlson J R, Goodwin S F, Heisenberg M, Krishnan K, Kyriacou C P, Partridge L, Riesgo-Escovar J, Rodrigues V, Tully T, O’Kane C J (2005). Isogenic autosomes to be applied in optimal screening for novel mutants with viable phenotypes in Drosophila melanogaster. J Neurogenet, 19(2): 57–85

DOI PMID

18
Urizar N L, Yang Z, Edenberg H J, Davis R L (2007). Drosophila homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. J Neurosci, 27(17): 4541–4551

DOI PMID

19
Wan H I, DiAntonio A, Fetter R D, Bergstrom K, Strauss R, Goodman C S (2000). Highwire regulates synaptic growth in Drosophila. Neuron, 26(2): 313–329

DOI PMID

cat25
Wand G, Levine M, Zweifel L, Schwindinger W, Abel T (2001). The cAMP-protein kinase A signal transduction pathway modulates ethanol consumption and sedative effects of ethanol. J Neurosci, 21: 5297–5303

20
Wen T, Parrish C A, Xu D, Wu Q, Shen P (2005). Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA, 102(6): 2141–2146

DOI PMID

21
Wolf F W, Heberlein U (2003). Invertebrate models of drug abuse. J Neurobiol, 54(1): 161–178

DOI PMID

22
Wu C, Wairkar Y P, Collins C A, DiAntonio A (2005). Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J Neurosci, 25(42): 9557–9566

DOI PMID

23
Wu C L, Xia S, Fu T F, Wang H, Chen Y H, Leong D, Chiang A S, Tully T (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci, 10(12): 1578–1586

DOI PMID

24
Yamamoto M, Pohli S, Durany N, Ozawa H, Saito T, Boissl K W, Zöchling R, Riederer P, Böning J, Götz M E (2001). Increased levels of calcium-sensitive adenylyl cyclase subtypes in the limbic system of alcoholics: evidence for a specific role of cAMP signaling in the human addictive brain. Brain Res, 895(1-2): 233–237

DOI PMID

Outlines

/