RESEARCH ARTICLE

miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)

  • Razia Rahman ,
  • Lokesh Kumar Gahlot ,
  • Yasha Hasija
Expand
  • Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

Received date: 09 Sep 2017

Accepted date: 26 Jan 2018

Published date: 26 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH, part of Springer Nature

Abstract

BACKGROUND: With the given diversity and abundance of several targets of miRNAs, they functionally appear to interact with several elements of the multiple cellular networks to maintain physiologic homeostasis. They can function as tumor suppressors or oncogenes, whose under or overexpression has both diagnostic and prognostic significance in various cancers while being implicated as prospective regulators of age-related disorders (ARD) as well. Establishing a concatenate between ARD and cancers by looking into the insights of the shared miRNAs may have a practical relevance.

METHODS: In the present work, we performed network analysis of miRNA-disease association and miRNA-target gene interaction to prioritize miRNAs that play significant roles in the manifestation of cancer as well as ARD. Also, we developed a repository that stores miRNAs common to both ARD and cancers along with their target genes.

RESULTS: We have comprehensively curated all miRNAs that we found to be shared in both the diseases in the human genome and established a database, miRACA (Database for microRNAs Associated with Cancers and ARD) that currently houses information of 1648 miRNAs that are significantly associated with 38 variants supported with pertinent data. It has been made available online at http://genomeinformatics.dtu.ac.in/miraca/ for easy retrieval and utilization of data by the scientific community.

CONCLUSION: To the best of our knowledge, our database is the first attempt at compilation of such data. We believe this work may serve as a significant resource and facilitate the analysis of miRNA regulatory mechanisms shared between cancers and ARD to apprehend disease etiology.

Cite this article

Razia Rahman , Lokesh Kumar Gahlot , Yasha Hasija . miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Frontiers in Biology, 2018 , 13(1) : 36 -50 . DOI: 10.1007/s11515-018-1481-7

Abbreviations

ARD: Age related disorders; CCKR: Cholecystokinin receptor; dbAARD database of Aging and Age Related Disorders; DAVID: The Database for Annotation, Visualization and Integrated Discovery; GO: Gene Ontology; HMDD: the Human microRNA Disease Database; miRACA: Database for microRNAs Associated with Cancers and ARD; PANTHER: Protein Analysis Through Evolutionary Relationships

Compliance with ethics guidelines

RaziaRahman and YashaHasija declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.
1
Agarwal V, Bell G W, Nam J W, Bartel D P (2015). Predicting effective microRNA target sites in mammalian mRNAs. eLife, 4: e05005

DOI PMID

2
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297

DOI PMID

3
Chang-Hao Tsao S, Behren A, Cebon J, Christophi C (2015). The role of circulating microRNA in hepatocellular carcinoma. Front Biosci (Landmark Ed), 20(1): 78–104

DOI PMID

4
Dalmay T, Edwards D R (2006). MicroRNAs and the hallmarks of cancer. Oncogene, 25(46): 6170–6175

DOI PMID

5
Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang M W, Hackl M, Monteforte R, Kühnel H, Schosserer M, Gruber F, Tschachler E, Scheideler M, Grillari-Voglauer R, Grillari J, Wieser M (2013). High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell, 12(3): 446–458

DOI PMID

6
Esquela-Kerscher A, Slack F J (2006). Oncomirs- microRNAs with a role in cancer. Nat Rev Cancer, 6(4): 259–269

DOI PMID

7
Filipowicz W, Bhattacharyya S N, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 9(2): 102–114

DOI PMID

8
Gan J, Qu Y, Li J, Zhao F, Mu D (2015). An evaluation of the links between microRNA, autophagy, and epilepsy. Rev Neurosci, 26(2): 225–237

DOI PMID

9
Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce C M, Bolondi L, Negrini M (2008). MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med, 12(6a 6A): 2189–2204

DOI PMID

10
Griffiths-Jones S (2006). miRBase: the microRNA sequence database. Methods Mol Biol, 342: 129–138

PMID

11
Guo H, Ingolia N T, Weissman J S, Bartel D P (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308): 835–840

DOI PMID

12
Hanahan D, Weinberg R A (2000). The hallmarks of cancer. Cell, 100(1): 57–70

DOI PMID

13
He H, Baldwin G S (2008). Rho GTPases and p21-activated kinase in the regulation of proliferation and apoptosis by gastrins. Int J Biochem Cell Biol, 40(10): 2018–2022

DOI PMID

14
He H, Yim M, Liu K H, Cody S C, Shulkes A, Baldwin G S (2008). Involvement of G proteins of the Rho family in the regulation of Bcl-2-like protein expression and caspase 3 activation by Gastrins. Cell Signal, 20(1): 83–93

DOI PMID

15
He X, Zhang J (2006). Why do hubs tend to be essential in protein networks? PLoS Genet, 2(6): e88

DOI PMID

16
Huang W, Sherman B T, Lempicki R A (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1): 1–13

DOI PMID

17
Huang W, Sherman B T, Lempicki R A (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1): 44–57

DOI PMID

18
Hulsen T, de Vlieg J, Alkema W (2008). BioVenn- a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics, 9(1): 488

DOI PMID

19
Huntzinger E, Izaurralde E (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 12(2): 99–110

DOI PMID

20
Hwang H W, Mendell J T (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer, 94(6): 776–780

DOI PMID

21
Iorio M V, Ferracin M, Liu C G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo J P, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin G A, Querzoli P, Negrini M, Croce C M (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65(16): 7065–7070

DOI PMID

22
Jung H J, Suh Y (2012). MicroRNA in Aging: From Discovery to Biology. Curr Genomics, 13(7): 548–557

DOI PMID

23
Kang J, Pervaiz S (2013). Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation? Front Oncol, 2: 206

DOI PMID

24
Kayani Mu, Kayani M A, Malik F A, Faryal R (2011). Role of miRNAs in breast cancer. Asian Pac J Cancer Prev, 12(12): 3175–3180

PMID

25
Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso M A (2014). Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014: 149185

DOI PMID

26
Lee R C, Feinbaum R L, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5): 843–854

DOI PMID

27
Lewis B P, Burge C B, Bartel D P (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1): 15–20

DOI PMID

28
Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014). HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res, 42(Database issue): D1070–D1074

DOI PMID

29
López-Otín C, Blasco M A, Partridge L, Serrano M, Kroemer G (2013). The hallmarks of aging. Cell, 153(6): 1194–1217

DOI PMID

30
Lu J, Getz G, Miska E A, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert B L, Mak R H, Ferrando A A, Downing J R, Jacks T, Horvitz H R, Golub T R (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043): 834–838

DOI PMID

31
Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell M J, Kitano H (2005). The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res, 33(suppl_1):D284–8.

32
Mi H, Muruganujan A, Casagrande J T, Thomas P D (2013). Large-scale gene function analysis with the PANTHER classification system. Nat Protoc, 8(8): 1551–1566

DOI PMID

33
Mulrane L, McGee S F, Gallagher W M, O’Connor D P (2013). miRNA dysregulation in breast cancer. Cancer Res, 73(22): 6554–6562

DOI PMID

34
Palmero E I, de Campos S G, Campos M, de Souza N C, Guerreiro I D, Carvalho A L, Marques M M (2011). Mechanisms and role of microRNA deregulation in cancer onset and progression. Genet Mol Biol, 34(3): 363–370

DOI PMID

35
Ponnappan S, Ponnappan U (2011). Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal, 14(8): 1551–1585

DOI PMID

36
Ro S, Park C, Young D, Sanders K M, Yan W (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Res, 35(17): 5944–5953

DOI PMID

37
Rozengurt E, Walsh J H (2001). Gastrin, CCK, signaling, and cancer. Annu Rev Physiol, 63(1): 49–76

DOI PMID

38
Serpico D, Molino L, Di Cosimo S (2014). microRNAs in breast cancer development and treatment. Cancer Treat Rev, 40(5): 595–604

DOI PMID

39
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11): 2498–2504

DOI PMID

40
Srivastava I, Gahlot L K, Khurana P, Hasija Y (2016). dbAARD & AGP: A computational pipeline for the prediction of genes associated with age related disorders. J Biomed Inform, 60: 153–161

DOI PMID

41
Takahashi R U, Miyazaki H, Ochiya T (2015). The roles of microRNAs in breast cancer. Cancers (Basel), 7(2): 598–616

DOI PMID

42
Volinia S, Calin G A, Liu C G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt R L, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris C C, Croce C M (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103(7): 2257–2261

DOI PMID

43
Wang L, Chadwick W, Park S S, Zhou Y, Silver N, Martin B, Maudsley S (2010). Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration. CNS Neurol Disord Drug Targets, 9(5): 651–660

DOI PMID

44
Wu L, Fan J, Belasco J G (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 103(11): 4034–4039

DOI PMID

45
Yip K W, Reed J C (2008). Bcl-2 family proteins and cancer. Oncogene, 27(50): 6398–6406

DOI PMID

46
Zhang L, Huang J, Yang N, Greshock J, Megraw M S, Giannakakis A, Liang S, Naylor T L, Barchetti A, Ward M R, Yao G, Medina A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty P A, Weber B L, Coukos G (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA, 103(24): 9136–9141

DOI PMID

Outlines

/