MicroRNAs and drug modulation in cancer: an intertwined new story
Received date: 16 Nov 2010
Accepted date: 07 Dec 2010
Published date: 01 Oct 2011
Copyright
MicroRNAs (miRNAs) are endogenous small non-coding RNAs (ncRNAs) which play important regulatory roles in physiological processes such as cellular differentiation, proliferation, development, apoptosis and stem cell self-renewal. An increasing number of papers have clearly claimed their involvement in cancer, providing, in some cases, also the molecular mechanisms implicated. Several studies led to the conclusion that miRNAs can be effectively used as anticancer agents alone or in combination with existing anticancer drugs. In particular, miRNAs can be effectively used to overcome drug resistance, one of the main factors responsible for anticancer treatment insuccess. One of the main questions remains how to modulate the expression of miRNAs in cancer cells. Interestingly, a few studies have shown that the expression of miRNAs is affected by drugs (including some drugs currently used as anticancer agents), therefore providing the rationale for an intertwined scenario in which miRNAs can be modulated by drugs and, in turn, can affect drug sensitivity of cancer cells.
Key words: miRNAs; cancer; multidrug resistance; transcription factor; chemotherapy
Francesca FANINI , Ivan VANNINI , Muller FABBRI . MicroRNAs and drug modulation in cancer: an intertwined new story[J]. Frontiers in Biology, 2011 , 6(5) : 351 -356 . DOI: 10.1007/s11515-011-1115-9
1 |
Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert J M, Wang Z, Philip P A, Sarkar F H (2010). Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res, 70(9): 3606-3617
|
2 |
Ambros V, Lee R C (2004). Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol, 265: 131-158
|
3 |
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281-297
|
4 |
Bommer G T, Gerin I, Feng Y, Kaczorowski A J, Kuick R, Love R E, Zhai Y, Giordano T J, Qin Z S, Moore B B, MacDougald O A, Cho K R, Fearon E R (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol, 17(15): 1298-1307
|
5 |
Borchert G M, Lanier W, Davidson B L (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 13(12): 1097-1101
|
6 |
Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957-1966
|
7 |
Carleton M, Cleary M A, Linsley P S (2007). MicroRNAs and cell cycle regulation. Cell Cycle, 6(17): 2127-2132
|
8 |
Castellano L, Giamas G, Jacob J, Coombes R C, Lucchesi W, Thiruchelvam P, Barton G, Jiao L R, Wait R, Waxman J, Hannon G J, Stebbing J (2009). The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA, 106(37): 15732-15737
|
9 |
Chang T C, Wentzel E A, Kent O A, Ramachandran K, Mullendore M, Lee K H, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein C J, Arking D E, Beer M A, Maitra A, Mendell J T (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26(5): 745-752
|
10 |
Climent J, Dimitrow P, Fridlyand J, Palacios J, Siebert R, Albertson D G, Gray J W, Pinkel D, Lluch A, Martinez-Climent J A (2007). Deletion of chromosome 11q predicts response to anthracycline-based chemotherapy in early breast cancer. Cancer Res, 67(2): 818-826
|
11 |
Corney D C, Flesken-Nikitin A, Godwin A K, Wang W, Nikitin A Y (2007). MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res, 67(18): 8433-8438
|
12 |
Corney D C, Hwang C I, Matoso A, Vogt M, Flesken-Nikitin A, Godwin A K, Kamat A A, Sood A K, Ellenson L H, Hermeking H, Nikitin A Y (2010). Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res, 16(4): 1119-1128
|
13 |
Cullen B R (2004). Transcription and processing of human microRNA precursors. Mol Cell, 16(6): 861-865
|
14 |
Fabbri M, Ivan M, Cimmino A, Negrini M, Calin G A (2007). Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther, 7(7): 1009-1019
|
15 |
Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008). Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun, 377(1): 114-119
|
16 |
Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu C G, Croce C M, Condorelli G (2008). MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene, 27(27): 3845-3855
|
17 |
Georges S A, Biery M C, Kim S Y, Schelter J M, Guo J, Chang A N, Jackson A L, Carleton M O, Linsley P S, Cleary M A, Chau B N (2008). Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res, 68(24): 10105-10112
|
18 |
He L, Hannon G J (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5(7): 522-531
|
19 |
Hermeking H (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ, 17(2): 193-199
|
20 |
Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak V P, Chekhun V F, Pogribny I P (2008). Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther, 7(7): 2152-2159
|
21 |
Kunnumakkara A B, Anand P, Aggarwal B B (2008). Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett, 269(2): 199-225
|
22 |
Kunnumakkara A B, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal B B (2007). Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res, 67(8): 3853-3861
|
23 |
Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23(20): 4051-4060
|
24 |
Lev-Ari S, Vexler A, Starr A, Ashkenazy-Voghera M, Greif J, Aderka D, Ben-Yosef R (2007). Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Invest, 25(6): 411-418
|
25 |
Lytle J R, Yario T A, Steitz J A (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA, 104(23): 9667-9672
|
26 |
Masri S, Liu Z, Phung S, Wang E, Yuan Y C, Chen S (2010). The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Res Treat, 124(1): 89-99
|
27 |
Miller T E, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro C L, Jacob S, Majumder S (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem, 283(44): 29897-29903
|
28 |
Pasquinelli A E, Hunter S, Bracht J (2005). MicroRNAs: a developing story. Curr Opin Genet Dev, 15(2): 200-205
|
29 |
Plasterk R H (2006). Micro RNAs in animal development. Cell, 124(5): 877-881
|
30 |
Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y (2010). miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One, 5(2): e9429
|
31 |
Sorrentino A, Liu C G, Addario A, Peschle C, Scambia G, Ferlini C (2008). Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol, 111(3): 478-486
|
32 |
Sun M, Estrov Z, Ji Y, Coombes K R, Harris D H, Kurzrock R (2008). Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther, 7(3): 464-473
|
33 |
Szakács G, Paterson J K, Ludwig J A, Booth-Genthe C, Gottesman M M (2006). Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 5(3): 219-234
|
34 |
Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13): 1586-1593
|
35 |
Vasudevan S, Tong Y, Steitz J A (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318(5858): 1931-1934
|
36 |
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008). miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer, 123(2): 372-379
|
37 |
Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond S M, Kim S, Nephew K P (2009). Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics, 25(4): 430-434
|
38 |
Yang H, Kong W, He L, Zhao J J, O’Donnell J D, Wang J, Wenham R M, Coppola D, Kruk P A, Nicosia S V, Cheng J Q (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res, 68(2): 425-433
|
39 |
Zheng T, Wang J, Chen X, Liu L (2010). Role of microRNA in anticancer drug resistance. Int J Cancer, 126(1): 2-10
|
/
〈 | 〉 |