REVIEW

MicroRNAs and drug modulation in cancer: an intertwined new story

  • Francesca FANINI 1 ,
  • Ivan VANNINI 1 ,
  • Muller FABBRI , 1,2
Expand
  • 1. Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, 47014, Italy
  • 2. Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.

Received date: 16 Nov 2010

Accepted date: 07 Dec 2010

Published date: 01 Oct 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

MicroRNAs (miRNAs) are endogenous small non-coding RNAs (ncRNAs) which play important regulatory roles in physiological processes such as cellular differentiation, proliferation, development, apoptosis and stem cell self-renewal. An increasing number of papers have clearly claimed their involvement in cancer, providing, in some cases, also the molecular mechanisms implicated. Several studies led to the conclusion that miRNAs can be effectively used as anticancer agents alone or in combination with existing anticancer drugs. In particular, miRNAs can be effectively used to overcome drug resistance, one of the main factors responsible for anticancer treatment insuccess. One of the main questions remains how to modulate the expression of miRNAs in cancer cells. Interestingly, a few studies have shown that the expression of miRNAs is affected by drugs (including some drugs currently used as anticancer agents), therefore providing the rationale for an intertwined scenario in which miRNAs can be modulated by drugs and, in turn, can affect drug sensitivity of cancer cells.

Cite this article

Francesca FANINI , Ivan VANNINI , Muller FABBRI . MicroRNAs and drug modulation in cancer: an intertwined new story[J]. Frontiers in Biology, 2011 , 6(5) : 351 -356 . DOI: 10.1007/s11515-011-1115-9

1
Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert J M, Wang Z, Philip P A, Sarkar F H (2010). Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res, 70(9): 3606-3617

DOI PMID

2
Ambros V, Lee R C (2004). Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol, 265: 131-158

PMID

3
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281-297

DOI PMID

4
Bommer G T, Gerin I, Feng Y, Kaczorowski A J, Kuick R, Love R E, Zhai Y, Giordano T J, Qin Z S, Moore B B, MacDougald O A, Cho K R, Fearon E R (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol, 17(15): 1298-1307

DOI PMID

5
Borchert G M, Lanier W, Davidson B L (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 13(12): 1097-1101

DOI PMID

6
Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12): 1957-1966

DOI PMID

7
Carleton M, Cleary M A, Linsley P S (2007). MicroRNAs and cell cycle regulation. Cell Cycle, 6(17): 2127-2132

DOI PMID

8
Castellano L, Giamas G, Jacob J, Coombes R C, Lucchesi W, Thiruchelvam P, Barton G, Jiao L R, Wait R, Waxman J, Hannon G J, Stebbing J (2009). The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA, 106(37): 15732-15737

DOI PMID

9
Chang T C, Wentzel E A, Kent O A, Ramachandran K, Mullendore M, Lee K H, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein C J, Arking D E, Beer M A, Maitra A, Mendell J T (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell, 26(5): 745-752

DOI PMID

10
Climent J, Dimitrow P, Fridlyand J, Palacios J, Siebert R, Albertson D G, Gray J W, Pinkel D, Lluch A, Martinez-Climent J A (2007). Deletion of chromosome 11q predicts response to anthracycline-based chemotherapy in early breast cancer. Cancer Res, 67(2): 818-826

DOI PMID

11
Corney D C, Flesken-Nikitin A, Godwin A K, Wang W, Nikitin A Y (2007). MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res, 67(18): 8433-8438

DOI PMID

12
Corney D C, Hwang C I, Matoso A, Vogt M, Flesken-Nikitin A, Godwin A K, Kamat A A, Sood A K, Ellenson L H, Hermeking H, Nikitin A Y (2010). Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res, 16(4): 1119-1128

DOI PMID

13
Cullen B R (2004). Transcription and processing of human microRNA precursors. Mol Cell, 16(6): 861-865

DOI PMID

14
Fabbri M, Ivan M, Cimmino A, Negrini M, Calin G A (2007). Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther, 7(7): 1009-1019

DOI PMID

15
Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008). Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun, 377(1): 114-119

DOI PMID

16
Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu C G, Croce C M, Condorelli G (2008). MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene, 27(27): 3845-3855

DOI PMID

17
Georges S A, Biery M C, Kim S Y, Schelter J M, Guo J, Chang A N, Jackson A L, Carleton M O, Linsley P S, Cleary M A, Chau B N (2008). Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res, 68(24): 10105-10112

DOI PMID

18
He L, Hannon G J (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5(7): 522-531

DOI PMID

19
Hermeking H (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ, 17(2): 193-199

DOI PMID

20
Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak V P, Chekhun V F, Pogribny I P (2008). Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther, 7(7): 2152-2159

DOI PMID

21
Kunnumakkara A B, Anand P, Aggarwal B B (2008). Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett, 269(2): 199-225

DOI PMID

22
Kunnumakkara A B, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal B B (2007). Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res, 67(8): 3853-3861

DOI PMID

23
Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 23(20): 4051-4060

DOI PMID

24
Lev-Ari S, Vexler A, Starr A, Ashkenazy-Voghera M, Greif J, Aderka D, Ben-Yosef R (2007). Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Invest, 25(6): 411-418

DOI PMID

25
Lytle J R, Yario T A, Steitz J A (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA, 104(23): 9667-9672

DOI PMID

26
Masri S, Liu Z, Phung S, Wang E, Yuan Y C, Chen S (2010). The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Res Treat, 124(1): 89-99

DOI PMID

27
Miller T E, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro C L, Jacob S, Majumder S (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem, 283(44): 29897-29903

DOI PMID

28
Pasquinelli A E, Hunter S, Bracht J (2005). MicroRNAs: a developing story. Curr Opin Genet Dev, 15(2): 200-205

DOI PMID

29
Plasterk R H (2006). Micro RNAs in animal development. Cell, 124(5): 877-881

DOI PMID

30
Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y (2010). miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One, 5(2): e9429

31
Sorrentino A, Liu C G, Addario A, Peschle C, Scambia G, Ferlini C (2008). Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol, 111(3): 478-486

DOI PMID

32
Sun M, Estrov Z, Ji Y, Coombes K R, Harris D H, Kurzrock R (2008). Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther, 7(3): 464-473

DOI PMID

33
Szakács G, Paterson J K, Ludwig J A, Booth-Genthe C, Gottesman M M (2006). Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 5(3): 219-234

DOI PMID

34
Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13): 1586-1593

DOI PMID

35
Vasudevan S, Tong Y, Steitz J A (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318(5858): 1931-1934

DOI PMID

36
Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008). miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer, 123(2): 372-379

DOI PMID

37
Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond S M, Kim S, Nephew K P (2009). Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics, 25(4): 430-434

DOI PMID

38
Yang H, Kong W, He L, Zhao J J, O’Donnell J D, Wang J, Wenham R M, Coppola D, Kruk P A, Nicosia S V, Cheng J Q (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res, 68(2): 425-433

DOI PMID

39
Zheng T, Wang J, Chen X, Liu L (2010). Role of microRNA in anticancer drug resistance. Int J Cancer, 126(1): 2-10

DOI PMID

Outlines

/