REVIEW

Triacylglycerol lipases of the yeast

  • Karlheinz GRILLITSCH ,
  • Günther DAUM
Expand
  • ACIB GmbH –Austrian Centre of Industrial Biotechnology Institute of Biochemistry, and Graz University of Technology, Graz 8010, Austria

Received date: 14 Feb 2011

Accepted date: 03 Mar 2011

Published date: 01 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

All eukaryotes including the yeast contain a lipid storage compartment which is named lipid particle, lipid droplet or oil body. Lipids accumulating in this subcellular fraction serve as a depot of energy and building blocks for membrane lipid synthesis. In the yeast, the major storage lipids are triacylglycerols (TGs) and steryl esters (SEs). An important step in the life cycle of these non-polar lipids is their mobilization from their site of storage and channeling of their degradation components to the appropriate metabolic pathways. A key step in this mobilization process is hydrolysis of TG and SE which is accomplished by lipases and hydrolases. In this review, we describe our recent knowledge of TG lipases from the yeast based on biochemical, molecular biological and cell biological information. We report about recent findings addressing the versatile role of TG lipases in lipid metabolism, and discuss non-polar lipid homeostasis and its newly discovered links to various cell biological processes in the yeast.

Cite this article

Karlheinz GRILLITSCH , Günther DAUM . Triacylglycerol lipases of the yeast[J]. Frontiers in Biology, 2011 , 6(3) : 219 -230 . DOI: 10.1007/s11515-011-1142-6

Acknowledgments

This work was support by the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (project P23029 to GD).
1
Abouakil N, Mas E, Bruneau N, Benajiba A, Lombardo D (1993). Bile salt-dependent lipase biosynthesis in rat pancreatic AR 4-2 J cells. Essential requirement of N-linked oligosaccharide for secretion and expression of a fully active enzyme. J Biol Chem, 268(34): 25755–25763

PMID

2
Abraham P R, Mulder A, Van ’t Riet J, Planta R J, Raué H A (1992). Molecular cloning and physical analysis of an 8.2 kb segment of chromosome XI of Saccharomyces cerevisiae reveals five tightly linked genes. Yeast, 8(3): 227–238

DOI PMID

3
Akoh C C, Lee G C, Shaw J F (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39(6): 513–526

DOI PMID

4
Alam M, Vance D E, Lehner R (2002). Structure-function analysis of human triacylglycerol hydrolase by site-directed mutagenesis: identification of the catalytic triad and a glycosylation site. Biochemistry, 41(21): 6679–6687

DOI PMID

5
Aloulou A, Rodriguez J A, Puccinelli D, Mouz N, Leclaire J, Leblond Y, Carrière F (2007). Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta, 1771(2): 228–237

PMID

6
Athenstaedt K, Daum G (2003). YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem, 278(26): 23317–23323

DOI PMID

7
Athenstaedt K, Daum G (2005). Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem, 280(45): 37301–37309

DOI PMID

8
Athenstaedt K, Daum G (2006). The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci, 63(12): 1355–1369

DOI PMID

9
Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud J M, Chardot T (2006). Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics, 6(5): 1450–1459

DOI PMID

10
Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein S D, Daum G (1999). Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol, 181(20): 6441–6448

PMID

11
Babour A, Beckerich J M, Gaillardin C (2004). Identification of an UDP-Glc:glycoprotein glucosyltransferase in the yeast Yarrowia lipolytica. Yeast, 21(1): 11–24

DOI PMID

12
Beopoulos A, Chardot T, Nicaud J M (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91(6): 692–696

DOI PMID

13
Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M T, Hapala I, Papanikolaou S, Chardot T, Nicaud J M (2008). Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol, 74(24): 7779–7789

DOI PMID

14
Berglund P (2001). Controlling lipase enantioselectivity for organic synthesis. Biomol Eng, 18(1): 13–22

DOI PMID

15
Bertolini M C, Laramée L, Thomas D Y, Cygler M, Schrag J D, Vernet T (1994). Polymorphism in the lipase genes of Geotrichum candidum strains. Eur J Biochem/FEBS, 219(1-2): 119–25

16
Bordes F, Barbe S, Escalier P, Mourey L, André I, Marty A, Tranier S (2010). Exploring the conformational states and rearrangements of Yarrowia lipolytica lipase. Biophys J, 99(7): 2225–2234

DOI PMID

17
Bornscheuer U T, Altenbuchner J, Meyer H H (1999). Directed evolution of an esterase: screening of enzyme libraries based on pH-indicators and a growth assay. Bioorg Med Chem, 7(10): 2169–2173

DOI PMID

18
Bornscheuer U T, Bessler C, Srinivas R, Krishna S H (2002). Optimizing lipases and related enzymes for efficient application. Trends Biotechnol, 20(10): 433–437

DOI PMID

19
Brady L, Brzozowski A M, Derewenda Z S, Dodson E, Dodson G, Tolley S, Turkenburg J P, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Menge U (1990). A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 343(6260): 767–770

DOI PMID

20
Brocca S, Persson M, Wehtje E, Adlercreutz P, Alberghina L, Lotti M (2000). Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa. Protein Sci, 9(5): 985–990

21
Brookheart R T, Michel C I, Schaffer J E (2009). As a matter of fat. Cell Metab, 10(1): 9–12

DOI PMID

22
Brzozowski A M, Derewenda U, Derewenda Z S, Dodson G G, Lawson D M, Turkenburg J P, Bjorkling F, Huge-Jensen B, Patkar S A, Thim L (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351(6326): 491–494

DOI PMID

23
Clausen M K, Christiansen K, Jensen P K, Behnke O (1974). Isolation of lipid particles from baker’s yeast. FEBS Lett, 43(2): 176–179

DOI PMID

24
Coleman R A, Lee D P (2004). Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res, 43(2): 134–176

DOI PMID

25
Czabany T, Athenstaedt K, Daum G (2007). Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta, 1771(3): 299–309

PMID

26
Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008). Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem, 283(25): 17065–17074

DOI PMID

27
Dartois V, Baulard A, Schanck K, Colson C (1992). Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim Biophys Acta, 1131(3): 253–260

PMID

28
Daum G, Lees N D, Bard M, Dickson R (1998). Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast, 14(16): 1471–1510

DOI PMID

29
Daum G, Paltauf F (1980). Triacylglycerols as fatty acid donors for membrane phospholipid biosynthesis in yeast. Monatsh Chem/Chemical Monthly, 111(2): 355–363

30
Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, Cattel L, Milla P, Rocco F, Conzelmann A, Vionnet C, Kelly D E, Kelly S, Schweizer E, Schüller H J, Hojad U, Greiner E, Finger K (1999). Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast, 15(7): 601–614

DOI PMID

31
Desfougères T, Haddouche R, Fudalej F, Neuvéglise C, Nicaud J M (2010). SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica. FEMS Yeast Res, 10(1): 93–103

DOI PMID

32
Dircks L K, Ke J, Sul H S (1999). A conserved seven amino acid stretch important for murine mitochondrial glycerol-3-phosphate acyltransferase activity. Significance of arginine 318 in catalysis. J Biol Chem, 274(49): 34728–34734

DOI PMID

33
Domínguez de María P, Sánchez-Montero J M, Sinisterra J V, Alcántara A R (2006). Understanding Candida rugosa lipases: an overview. Biotechnol Adv, 24(2): 180–196

DOI PMID

34
Ferrer P, Montesinos J L, Valero F, Solà C (2001). Production of native and recombinant lipases by Candida rugosa: a review. Appl Biochem Biotechnol, 95(3): 221–255

DOI PMID

35
Fickers P, Benetti P H, Waché Y, Marty A, Mauersberger S, Smit M S, Nicaud J M (2005a). Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res, 5(6-7): 527–543

DOI PMID

36
Fickers P, Fudalej F, Le Dall M T, Casaregola S, Gaillardin C, Thonart P, Nicaud J M (2005b). Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol, 42(3): 264–274

DOI PMID

37
Fjerbaek L, Christensen K V, Norddahl B (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng, 102(5): 1298–1315

DOI PMID

38
Ghosh A K, Ramakrishnan G, Rajasekharan R (2008). YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem, 283(15): 9768–9775

DOI PMID

39
Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin T M, Wagner E F, Zechner R (2002). Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem, 277(7): 4806–4815

DOI PMID

40
Ham H J, Rho H J, Shin S K, Yoon H J (2010). The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria. J Biol Chem, 285(5): 3005–3013

DOI PMID

41
Heath R J, Rock C O (1998). A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol, 180(6): 1425–1430

PMID

42
Heier C, Taschler U, Rengachari S, Oberer M, Wolinski H, Natter K, Kohlwein S D, Leber R, Zimmermann R (2010). Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomycescerevisiae. Biochim Biophys Acta, 1801(9): 1063–1071

PMID

43
Huge-Jensen B, Galluzzo D R, Jensen R G (1988). Studies on free and immobilized lipases from Mucor miehei. J Am Oil Chem Soc, 65(2): 905–910

DOI

44
Hunkova Z, Fencl A (1978). Toxic effects of fatty acids on yeast cells: possible mechanisms of action. Biotechnol Bioeng, 20(8): 1235–1247

DOI PMID

45
Hunkova Z, Fencl Z (1977). Toxic effects of fatty acids on yeast cells: dependence of inhibitory effects on fatty acid concentration. Biotechnol Bioeng, 19(11): 1623–1641

DOI PMID

46
Jandrositz A, Petschnigg J, Zimmermann R, Natter K, Scholze H, Hermetter A, Kohlwein S D, Leber R (2005). The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta, 1735(1): 50–58

PMID

47
Jenkins C M, Mancuso D J, Yan W, Sims H F, Gibson B, Gross R W (2004). Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem, 279(47): 48968–48975

DOI PMID

48
Jolivet P, Bordes F, Fudalej F, Cancino M, Vignaud C, Dossat V, Burghoffer C, Marty A, Chardot T, Nicaud J M (2007). Analysis of Yarrowia lipolytica extracellular lipase Lip2p glycosylation. FEMS Yeast Res, 7(8): 1317–1327

DOI PMID

49
Kim K K, Song H K, Shin D H, Hwang K Y, Suh S W (1997). The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure, 5(2): 173–185

DOI PMID

50
Köffel R, Tiwari R, Falquet L, Schneiter R (2005). The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol, 25(5): 1655–1668

DOI PMID

51
Kohlwein S D (2010). Triacylglycerol homeostasis: insights from yeast. J Biol Chem, 285(21): 15663–15667

DOI PMID

52
Kurat C F, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein S D (2006). Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem, 281(1): 491–500

DOI PMID

53
Kurat C F, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein S D (2009). Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell, 33(1): 53–63

DOI PMID

54
Lass A, Zimmermann R, Oberer M, Zechner R (2011). Lipolysis- a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res, 50(1): 14–27

DOI PMID

55
Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994). Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast, 10(11): 1421–1428

DOI PMID

56
Lewin T M, Wang P, Coleman R A (1999). Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 38(18): 5764–5771

DOI PMID

57
Liu W S, Pan X X, Jia B, Zhao H Y, Xu L, Liu Y, Yan Y J (2010). Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 88(4): 885–891

DOI PMID

58
Lotti M, Grandori R, Fusetti F, Longhi S, Brocca S, Tramontano A, Alberghina L (1993). Cloning and analysis of Candida cylindracea lipase sequences. Gene, 124(1): 45–55

DOI PMID

59
Martinelle M, Holmquist M, Hult K (1995). On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta, 1258(3): 272–276

PMID

60
McPartland J M, Matias I, Di Marzo V, Glass M (2006). Evolutionary origins of the endocannabinoid system. Gene, 370: 64–74

DOI PMID

61
Mignery G A, Pikaard C S, Park W D (1988). Molecular characterization of the patatin multigene family of potato. Gene, 62(1): 27–44

DOI PMID

62
Murzin A G, Brenner S E, Hubbard T, Chothia C (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 247(4): 536–540

DOI PMID

63
Najjar A, Robert S, Guérin C, Violet-Asther M, Carrière F (2010). Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Appl Microbiol Biotechnol, 89(6): 1947–1962

DOI PMID

64
Ollis D L, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken S M, Harel M, Remington S J, Silman I, Schrag J, Sussman J L, Verschueren K H G, Goldman A (1992). The α/β hydrolase fold. Protein Eng, 5(3): 197–211

DOI PMID

65
Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer F B, Tsutsumi O, Yamada N (2000). Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA, 97(2): 787–792

DOI PMID

66
Parks L W, Casey W M (1995). Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol, 49(1): 95–116

DOI PMID

67
Pignède G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud J M (2000b). Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol, 182(10): 2802–2810

DOI PMID

68
Pignède G, Wang H J, Fudalej F, Seman M, Gaillardin C, Nicaud J M (2000a). Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol, 66(8): 3283–3289

DOI PMID

69
Rajakumari S, Daum G (2010a). Janus-faced enzymes yeast Tgl3p and Tgl5p catalyze lipase and acyltransferase reactions. Mol Biol Cell, 21(4): 501–510

DOI PMID

70
Rajakumari S, Daum G (2010b). Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. J Biol Chem, 285(21): 15769–15776

DOI PMID

71
Rajakumari S, Grillitsch K, Daum G (2008). Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res, 47(3): 157–171

DOI PMID

72
Rajakumari S, Rajasekharan R, Daum G (2010). Triacylglycerol lipolysis is linked to sphingolipid and phospholipid metabolism of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 1801(12): 1314–1322

PMID

73
Schaffer J E (2003). Lipotoxicity: when tissues overeat. Curr Opin Lipidol, 14(3): 281–287

DOI PMID

74
Schmidt R D, Verger R (1998). Lipases: Interfacial enzymes with attractive applications. Angew Chem, 37(12): 1608–1633

DOI

75
Schousboe I (1976a). Properties of triacylglycerol lipase in a mitochondrial fraction from baker’s yeast (Saccharomyces cerevisiae). Biochim Biophys Acta, 450(2): 165–174

PMID

76
Schousboe I (1976b). Triacylglycerol lipase activity in baker’s yeast (Saccharomyces cerevisiae). Biochim Biophys Acta, 424(3): 366–375

PMID

77
Schrag J D, Cygler M (1997). Lipases and alpha/beta hydrolase fold. Methods Enzymol, 284: 85–107

DOI PMID

78
Sebban-Kreuzer C, Deprez-Beauclair P, Berton A, Crenon I (2006). High-level expression of nonglycosylated human pancreatic lipase-related protein 2 in Pichia pastoris. Protein Expr Purif, 49(2): 284–291

DOI PMID

79
Sharma S C (2006). Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae. FEMS Yeast Res, 6(7): 1047–1051

DOI PMID

80
Song H T, Jiang Z B, Ma L X (2006). Expression and purification of two lipases from Yarrowia lipolytica AS 2.1216. Protein Expr Purif, 47(2): 393–397

DOI PMID

81
Sorger D, Daum G (2003). Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol, 61(4): 289–299

PMID

82
Thevenieau F, Le Dall M T, Nthangeni B, Mauersberger S, Marchal R, Nicaud J M (2007). Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol, 44(6): 531–542

DOI PMID

83
Thoms S, Debelyy M O, Nau K, Meyer H E, Erdmann R (2008). Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J, 275(3): 504–514

DOI PMID

84
Turkish A, Sturley S L (2007). Regulation of triglyceride metabolism. I. Eukaryotic neutral lipid synthesis: “Many ways to skin ACAT or a DGAT”. Am J Physiol Gastrointest Liver Physiol, 292(4): G953–G957

DOI PMID

85
Ubersax J A, Woodbury E L, Quang P N, Paraz M, Blethrow J D, Shah K, Shokat K M, Morgan D O (2003). Targets of the cyclin-dependent kinase Cdk1. Nature, 425(6960): 859–864

DOI PMID

86
Ueda M (2002). Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. J Mol Catal B: Enzym, 17(3-5): 113–124

DOI

87
Umebayashi K, Nakano A (2003). Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol, 161(6): 1117–1131

DOI PMID

88
Unger R H (2003). The physiology of cellular liporegulation. Annu Rev Physiol, 65(1): 333–347

DOI PMID

89
Vakhlu J, Kour A (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol, 9(1): 69–85

DOI

90
Van Heusden G P, Nebohâcovâ M, Overbeeke T L, Steensma H Y (1998). The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant. Yeast, 14(3): 225–232

DOI PMID

91
Vaughan M, Berger J E, Steinberg D (1964). Hormon-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem, 239(2): 401–409

PMID

92
Verger R (1997). Interfacial activation of lipases: facts and artefacts. Trends Biotechnol, 15(1): 32–38

DOI

93
Villena J A, Roy S, Sarkadi-Nagy E, Kim K H, Sul H S (2004). Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem, 279(45): 47066–47075

DOI PMID

94
Wagner A, Daum G (2005). Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae. Biochem Soc Trans, 33(Pt 5): 1174–1177

DOI PMID

95
Winkler F K, D’Arcy A, Hunziker W (1990). Structure of human pancreatic lipase. Nature, 343(6260): 771–774

DOI PMID

96
Xu L, Jiang X, Yang J, Liu Y, Yan Y (2010). Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization. Biotechnol Lett, 32(2): 269–276

DOI PMID

97
Yu M, Lange S, Richter S, Tan T, Schmid R D (2007). High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expr Purif, 53(2): 255–263

DOI PMID

98
Zimmermann R, Lass A, Haemmerle G, Zechner R (2009). Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta, 1791(6): 494–500

PMID

99
Zimmermann R, Strauss J G, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 306(5700): 1383–1386

DOI PMID

Outlines

/