Received date: 14 Feb 2011
Accepted date: 03 Mar 2011
Published date: 01 Jun 2011
Copyright
All eukaryotes including the yeast contain a lipid storage compartment which is named lipid particle, lipid droplet or oil body. Lipids accumulating in this subcellular fraction serve as a depot of energy and building blocks for membrane lipid synthesis. In the yeast, the major storage lipids are triacylglycerols (TGs) and steryl esters (SEs). An important step in the life cycle of these non-polar lipids is their mobilization from their site of storage and channeling of their degradation components to the appropriate metabolic pathways. A key step in this mobilization process is hydrolysis of TG and SE which is accomplished by lipases and hydrolases. In this review, we describe our recent knowledge of TG lipases from the yeast based on biochemical, molecular biological and cell biological information. We report about recent findings addressing the versatile role of TG lipases in lipid metabolism, and discuss non-polar lipid homeostasis and its newly discovered links to various cell biological processes in the yeast.
Key words: triacylglycerol; lipase; fatty acid; acyltransferase; lipid droplet/particles; yeast
Karlheinz GRILLITSCH , Günther DAUM . Triacylglycerol lipases of the yeast[J]. Frontiers in Biology, 2011 , 6(3) : 219 -230 . DOI: 10.1007/s11515-011-1142-6
1 |
Abouakil N, Mas E, Bruneau N, Benajiba A, Lombardo D (1993). Bile salt-dependent lipase biosynthesis in rat pancreatic AR 4-2 J cells. Essential requirement of N-linked oligosaccharide for secretion and expression of a fully active enzyme. J Biol Chem, 268(34): 25755–25763
|
2 |
Abraham P R, Mulder A, Van ’t Riet J, Planta R J, Raué H A (1992). Molecular cloning and physical analysis of an 8.2 kb segment of chromosome XI of Saccharomyces cerevisiae reveals five tightly linked genes. Yeast, 8(3): 227–238
|
3 |
Akoh C C, Lee G C, Shaw J F (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39(6): 513–526
|
4 |
Alam M, Vance D E, Lehner R (2002). Structure-function analysis of human triacylglycerol hydrolase by site-directed mutagenesis: identification of the catalytic triad and a glycosylation site. Biochemistry, 41(21): 6679–6687
|
5 |
Aloulou A, Rodriguez J A, Puccinelli D, Mouz N, Leclaire J, Leblond Y, Carrière F (2007). Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta, 1771(2): 228–237
|
6 |
Athenstaedt K, Daum G (2003). YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem, 278(26): 23317–23323
|
7 |
Athenstaedt K, Daum G (2005). Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem, 280(45): 37301–37309
|
8 |
Athenstaedt K, Daum G (2006). The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci, 63(12): 1355–1369
|
9 |
Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud J M, Chardot T (2006). Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics, 6(5): 1450–1459
|
10 |
Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein S D, Daum G (1999). Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol, 181(20): 6441–6448
|
11 |
Babour A, Beckerich J M, Gaillardin C (2004). Identification of an UDP-Glc:glycoprotein glucosyltransferase in the yeast Yarrowia lipolytica. Yeast, 21(1): 11–24
|
12 |
Beopoulos A, Chardot T, Nicaud J M (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91(6): 692–696
|
13 |
Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M T, Hapala I, Papanikolaou S, Chardot T, Nicaud J M (2008). Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol, 74(24): 7779–7789
|
14 |
Berglund P (2001). Controlling lipase enantioselectivity for organic synthesis. Biomol Eng, 18(1): 13–22
|
15 |
Bertolini M C, Laramée L, Thomas D Y, Cygler M, Schrag J D, Vernet T (1994). Polymorphism in the lipase genes of Geotrichum candidum strains. Eur J Biochem/FEBS, 219(1-2): 119–25
|
16 |
Bordes F, Barbe S, Escalier P, Mourey L, André I, Marty A, Tranier S (2010). Exploring the conformational states and rearrangements of Yarrowia lipolytica lipase. Biophys J, 99(7): 2225–2234
|
17 |
Bornscheuer U T, Altenbuchner J, Meyer H H (1999). Directed evolution of an esterase: screening of enzyme libraries based on pH-indicators and a growth assay. Bioorg Med Chem, 7(10): 2169–2173
|
18 |
Bornscheuer U T, Bessler C, Srinivas R, Krishna S H (2002). Optimizing lipases and related enzymes for efficient application. Trends Biotechnol, 20(10): 433–437
|
19 |
Brady L, Brzozowski A M, Derewenda Z S, Dodson E, Dodson G, Tolley S, Turkenburg J P, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Menge U (1990). A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 343(6260): 767–770
|
20 |
Brocca S, Persson M, Wehtje E, Adlercreutz P, Alberghina L, Lotti M (2000). Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa. Protein Sci, 9(5): 985–990
|
21 |
Brookheart R T, Michel C I, Schaffer J E (2009). As a matter of fat. Cell Metab, 10(1): 9–12
|
22 |
Brzozowski A M, Derewenda U, Derewenda Z S, Dodson G G, Lawson D M, Turkenburg J P, Bjorkling F, Huge-Jensen B, Patkar S A, Thim L (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351(6326): 491–494
|
23 |
Clausen M K, Christiansen K, Jensen P K, Behnke O (1974). Isolation of lipid particles from baker’s yeast. FEBS Lett, 43(2): 176–179
|
24 |
Coleman R A, Lee D P (2004). Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res, 43(2): 134–176
|
25 |
Czabany T, Athenstaedt K, Daum G (2007). Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta, 1771(3): 299–309
|
26 |
Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008). Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem, 283(25): 17065–17074
|
27 |
Dartois V, Baulard A, Schanck K, Colson C (1992). Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim Biophys Acta, 1131(3): 253–260
|
28 |
Daum G, Lees N D, Bard M, Dickson R (1998). Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast, 14(16): 1471–1510
|
29 |
Daum G, Paltauf F (1980). Triacylglycerols as fatty acid donors for membrane phospholipid biosynthesis in yeast. Monatsh Chem/Chemical Monthly, 111(2): 355–363
|
30 |
Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, Cattel L, Milla P, Rocco F, Conzelmann A, Vionnet C, Kelly D E, Kelly S, Schweizer E, Schüller H J, Hojad U, Greiner E, Finger K (1999). Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast, 15(7): 601–614
|
31 |
Desfougères T, Haddouche R, Fudalej F, Neuvéglise C, Nicaud J M (2010). SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica. FEMS Yeast Res, 10(1): 93–103
|
32 |
Dircks L K, Ke J, Sul H S (1999). A conserved seven amino acid stretch important for murine mitochondrial glycerol-3-phosphate acyltransferase activity. Significance of arginine 318 in catalysis. J Biol Chem, 274(49): 34728–34734
|
33 |
Domínguez de María P, Sánchez-Montero J M, Sinisterra J V, Alcántara A R (2006). Understanding Candida rugosa lipases: an overview. Biotechnol Adv, 24(2): 180–196
|
34 |
Ferrer P, Montesinos J L, Valero F, Solà C (2001). Production of native and recombinant lipases by Candida rugosa: a review. Appl Biochem Biotechnol, 95(3): 221–255
|
35 |
Fickers P, Benetti P H, Waché Y, Marty A, Mauersberger S, Smit M S, Nicaud J M (2005a). Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res, 5(6-7): 527–543
|
36 |
Fickers P, Fudalej F, Le Dall M T, Casaregola S, Gaillardin C, Thonart P, Nicaud J M (2005b). Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol, 42(3): 264–274
|
37 |
Fjerbaek L, Christensen K V, Norddahl B (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng, 102(5): 1298–1315
|
38 |
Ghosh A K, Ramakrishnan G, Rajasekharan R (2008). YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem, 283(15): 9768–9775
|
39 |
Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin T M, Wagner E F, Zechner R (2002). Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem, 277(7): 4806–4815
|
40 |
Ham H J, Rho H J, Shin S K, Yoon H J (2010). The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria. J Biol Chem, 285(5): 3005–3013
|
41 |
Heath R J, Rock C O (1998). A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol, 180(6): 1425–1430
|
42 |
Heier C, Taschler U, Rengachari S, Oberer M, Wolinski H, Natter K, Kohlwein S D, Leber R, Zimmermann R (2010). Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomycescerevisiae. Biochim Biophys Acta, 1801(9): 1063–1071
|
43 |
Huge-Jensen B, Galluzzo D R, Jensen R G (1988). Studies on free and immobilized lipases from Mucor miehei. J Am Oil Chem Soc, 65(2): 905–910
|
44 |
Hunkova Z, Fencl A (1978). Toxic effects of fatty acids on yeast cells: possible mechanisms of action. Biotechnol Bioeng, 20(8): 1235–1247
|
45 |
Hunkova Z, Fencl Z (1977). Toxic effects of fatty acids on yeast cells: dependence of inhibitory effects on fatty acid concentration. Biotechnol Bioeng, 19(11): 1623–1641
|
46 |
Jandrositz A, Petschnigg J, Zimmermann R, Natter K, Scholze H, Hermetter A, Kohlwein S D, Leber R (2005). The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta, 1735(1): 50–58
|
47 |
Jenkins C M, Mancuso D J, Yan W, Sims H F, Gibson B, Gross R W (2004). Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem, 279(47): 48968–48975
|
48 |
Jolivet P, Bordes F, Fudalej F, Cancino M, Vignaud C, Dossat V, Burghoffer C, Marty A, Chardot T, Nicaud J M (2007). Analysis of Yarrowia lipolytica extracellular lipase Lip2p glycosylation. FEMS Yeast Res, 7(8): 1317–1327
|
49 |
Kim K K, Song H K, Shin D H, Hwang K Y, Suh S W (1997). The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure, 5(2): 173–185
|
50 |
Köffel R, Tiwari R, Falquet L, Schneiter R (2005). The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol, 25(5): 1655–1668
|
51 |
Kohlwein S D (2010). Triacylglycerol homeostasis: insights from yeast. J Biol Chem, 285(21): 15663–15667
|
52 |
Kurat C F, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein S D (2006). Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem, 281(1): 491–500
|
53 |
Kurat C F, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein S D (2009). Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell, 33(1): 53–63
|
54 |
Lass A, Zimmermann R, Oberer M, Zechner R (2011). Lipolysis- a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res, 50(1): 14–27
|
55 |
Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994). Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast, 10(11): 1421–1428
|
56 |
Lewin T M, Wang P, Coleman R A (1999). Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 38(18): 5764–5771
|
57 |
Liu W S, Pan X X, Jia B, Zhao H Y, Xu L, Liu Y, Yan Y J (2010). Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 88(4): 885–891
|
58 |
Lotti M, Grandori R, Fusetti F, Longhi S, Brocca S, Tramontano A, Alberghina L (1993). Cloning and analysis of Candida cylindracea lipase sequences. Gene, 124(1): 45–55
|
59 |
Martinelle M, Holmquist M, Hult K (1995). On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta, 1258(3): 272–276
|
60 |
McPartland J M, Matias I, Di Marzo V, Glass M (2006). Evolutionary origins of the endocannabinoid system. Gene, 370: 64–74
|
61 |
Mignery G A, Pikaard C S, Park W D (1988). Molecular characterization of the patatin multigene family of potato. Gene, 62(1): 27–44
|
62 |
Murzin A G, Brenner S E, Hubbard T, Chothia C (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 247(4): 536–540
|
63 |
Najjar A, Robert S, Guérin C, Violet-Asther M, Carrière F (2010). Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Appl Microbiol Biotechnol, 89(6): 1947–1962
|
64 |
Ollis D L, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken S M, Harel M, Remington S J, Silman I, Schrag J, Sussman J L, Verschueren K H G, Goldman A (1992). The α/β hydrolase fold. Protein Eng, 5(3): 197–211
|
65 |
Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer F B, Tsutsumi O, Yamada N (2000). Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA, 97(2): 787–792
|
66 |
Parks L W, Casey W M (1995). Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol, 49(1): 95–116
|
67 |
Pignède G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud J M (2000b). Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol, 182(10): 2802–2810
|
68 |
Pignède G, Wang H J, Fudalej F, Seman M, Gaillardin C, Nicaud J M (2000a). Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol, 66(8): 3283–3289
|
69 |
Rajakumari S, Daum G (2010a). Janus-faced enzymes yeast Tgl3p and Tgl5p catalyze lipase and acyltransferase reactions. Mol Biol Cell, 21(4): 501–510
|
70 |
Rajakumari S, Daum G (2010b). Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. J Biol Chem, 285(21): 15769–15776
|
71 |
Rajakumari S, Grillitsch K, Daum G (2008). Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res, 47(3): 157–171
|
72 |
Rajakumari S, Rajasekharan R, Daum G (2010). Triacylglycerol lipolysis is linked to sphingolipid and phospholipid metabolism of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 1801(12): 1314–1322
|
73 |
Schaffer J E (2003). Lipotoxicity: when tissues overeat. Curr Opin Lipidol, 14(3): 281–287
|
74 |
Schmidt R D, Verger R (1998). Lipases: Interfacial enzymes with attractive applications. Angew Chem, 37(12): 1608–1633
|
75 |
Schousboe I (1976a). Properties of triacylglycerol lipase in a mitochondrial fraction from baker’s yeast (Saccharomyces cerevisiae). Biochim Biophys Acta, 450(2): 165–174
|
76 |
Schousboe I (1976b). Triacylglycerol lipase activity in baker’s yeast (Saccharomyces cerevisiae). Biochim Biophys Acta, 424(3): 366–375
|
77 |
Schrag J D, Cygler M (1997). Lipases and alpha/beta hydrolase fold. Methods Enzymol, 284: 85–107
|
78 |
Sebban-Kreuzer C, Deprez-Beauclair P, Berton A, Crenon I (2006). High-level expression of nonglycosylated human pancreatic lipase-related protein 2 in Pichia pastoris. Protein Expr Purif, 49(2): 284–291
|
79 |
Sharma S C (2006). Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae. FEMS Yeast Res, 6(7): 1047–1051
|
80 |
Song H T, Jiang Z B, Ma L X (2006). Expression and purification of two lipases from Yarrowia lipolytica AS 2.1216. Protein Expr Purif, 47(2): 393–397
|
81 |
Sorger D, Daum G (2003). Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol, 61(4): 289–299
|
82 |
Thevenieau F, Le Dall M T, Nthangeni B, Mauersberger S, Marchal R, Nicaud J M (2007). Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol, 44(6): 531–542
|
83 |
Thoms S, Debelyy M O, Nau K, Meyer H E, Erdmann R (2008). Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J, 275(3): 504–514
|
84 |
Turkish A, Sturley S L (2007). Regulation of triglyceride metabolism. I. Eukaryotic neutral lipid synthesis: “Many ways to skin ACAT or a DGAT”. Am J Physiol Gastrointest Liver Physiol, 292(4): G953–G957
|
85 |
Ubersax J A, Woodbury E L, Quang P N, Paraz M, Blethrow J D, Shah K, Shokat K M, Morgan D O (2003). Targets of the cyclin-dependent kinase Cdk1. Nature, 425(6960): 859–864
|
86 |
Ueda M (2002). Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. J Mol Catal B: Enzym, 17(3-5): 113–124
|
87 |
Umebayashi K, Nakano A (2003). Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol, 161(6): 1117–1131
|
88 |
Unger R H (2003). The physiology of cellular liporegulation. Annu Rev Physiol, 65(1): 333–347
|
89 |
Vakhlu J, Kour A (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol, 9(1): 69–85
|
90 |
Van Heusden G P, Nebohâcovâ M, Overbeeke T L, Steensma H Y (1998). The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant. Yeast, 14(3): 225–232
|
91 |
Vaughan M, Berger J E, Steinberg D (1964). Hormon-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem, 239(2): 401–409
|
92 |
Verger R (1997). Interfacial activation of lipases: facts and artefacts. Trends Biotechnol, 15(1): 32–38
|
93 |
Villena J A, Roy S, Sarkadi-Nagy E, Kim K H, Sul H S (2004). Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem, 279(45): 47066–47075
|
94 |
Wagner A, Daum G (2005). Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae. Biochem Soc Trans, 33(Pt 5): 1174–1177
|
95 |
Winkler F K, D’Arcy A, Hunziker W (1990). Structure of human pancreatic lipase. Nature, 343(6260): 771–774
|
96 |
Xu L, Jiang X, Yang J, Liu Y, Yan Y (2010). Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization. Biotechnol Lett, 32(2): 269–276
|
97 |
Yu M, Lange S, Richter S, Tan T, Schmid R D (2007). High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expr Purif, 53(2): 255–263
|
98 |
Zimmermann R, Lass A, Haemmerle G, Zechner R (2009). Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta, 1791(6): 494–500
|
99 |
Zimmermann R, Strauss J G, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 306(5700): 1383–1386
|
/
〈 | 〉 |