REVIEW

Actin organization and regulation during pollen tube growth

  • Xiuhua XUE ,
  • Fei DU ,
  • Jinsheng ZHU ,
  • Haiyun REN
Expand
  • Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China

Received date: 08 Nov 2010

Accepted date: 24 Nov 2010

Published date: 01 Feb 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Pollen is the male gametophyte of seed plants and its tube growth is essential for successful fertilization. Mounting evidence has demonstrated that actin organization and regulation plays a central role in the process of its germination and polarized growth. The native structures and dynamics of actin are subtly modulated by many factors among which numerous actin binding proteins (ABPs) are the most direct and significant regulators. Upstream signals such as Ca2+, PIP2 (phosphatidylinositol-4,5-bis-phosphate) and GTPases can also indirectly act on actin organization through several ABPs. Under such elaborate regulation, actin structures show dynamically continuous modulation to adapt to the BoldItalic biologic functions to mediate secretory vesicle transportation and fusion, which lead to normal growth of the pollen tube. Many encouraging progress has been made in the connection between actin regulation and pollen tube growth in recent years. In this review, we summarize different factors that affect actin organization in pollen tube growth and highlight relative research progress.

Cite this article

Xiuhua XUE , Fei DU , Jinsheng ZHU , Haiyun REN . Actin organization and regulation during pollen tube growth[J]. Frontiers in Biology, 2011 , 06(01) : 40 -51 . DOI: 10.1007/s11515-011-1110-1

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 30970174, 30325005, 30870211) and the National Basic Research Program of China (No. 2007CB108700) to HR.
1
Allwood E G, Anthony R G, Smertenko A P, Reichelt S, Drøbak B K, Doonan J H, Weeds A G, Hussey P J (2002). Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell, 14(11): 2915–2927

DOI PMID

2
Anderson R A, Boronenkov I V, Doughman S D, Kunz J, Loijens J C (1999). Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem, 274(15): 9907–9910

DOI PMID

3
Andrianantoandro E, Pollard T D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell, 24(1): 13–23

DOI PMID

4
Bamburg J R, Bernstein B W (2008). ADF/cofilin. Curr Biol, 18(7): R273–R275

DOI PMID

5
Bar-Sagi D, Hall A (2000). Ras and Rho GTPases: a family reunion. Cell, 103(2): 227–238

DOI PMID

6
Bedinger P (1992). The remarkable biology of pollen. Plant Cell, 4(8): 879–887

PMID

7
Blanchoin L, Pollard T D (1999). Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. J Biol Chem, 274(22): 15538–15546

DOI PMID

8
Blanchoin L, Staiger C J (2010). Plant formins: diverse isoforms and unique molecular mechanism. Biochim Biophys Acta, 1803(2): 201–206

DOI PMID

9
Cai G, Cresti M (2008). Organelle motility in the pollen tube: a tale of 20 years. J Exp Bot, Page 1 of 15

10
Cárdenas L, Lovy-Wheeler A, Kunkel J G, Hepler P K (2008). Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol, 146(4): 1611–1621

DOI PMID

11
Carlier M F, Laurent V, Santolini J, Melki R, Didry D, Xia G X, Hong Y, Chua N H, Pantaloni D (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol, 136(6): 1307–1322

DOI PMID

12
Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M (2008). Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol, 25(12): 2717–2733

DOI PMID

13
Chaudhry F, Guérin C, von Witsch M, Blanchoin L, Staiger C J (2007). Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin. Mol Biol Cell, 18(8): 3002–3014

DOI PMID

14
Chen C Y, Cheung A Y, Wu H M (2003). Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell, 15(1): 237–249

DOI PMID

15
Chen C Y, Wong E I, Vidali L, Estavillo A, Hepler P K, Wu H M, Cheung A Y (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell, 14(9): 2175–2190

DOI PMID

16
Chen H, Bernstein B W, Sneider J M, Boyle J A, Minamide L S, Bamburg J R (2004). In vitro activity differences between proteins of the ADF/cofilin family define two distinct subgroups. Biochemistry, 43(22): 7127–7142

DOI PMID

17
Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluska F, Samaj J, Lin J (2009). Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiol, 149(2): 1111–1126

DOI PMID

18
Cheung A Y, Duan Q H, Costa S S, de Graaf B H, Di Stilio V S, Feijo J, Wu H M (2008). The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant, 1(4): 686–702

DOI PMID

19
Cheung A Y, Niroomand S, Zou Y J, Wu H M (2010). A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA, 107(37): 16390–16395

DOI PMID

20
Cheung A Y, Wu H M (2004). Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell, 16(1): 257–269

DOI PMID

21
Cheung A Y, Wu H M (2007). Structural and functional compartmentalization in pollen tubes. J Exp Bot, 58(1): 75–82

DOI PMID

22
Cheung A Y, Wu H M (2008). Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol, 59(1): 547–572

DOI PMID

23
Cooper J A, Sept D (2008). New insights into mechanism and regulation of actin capping protein. Int Rev Cell Mol Biol, 267: 183–206

DOI PMID

24
Cremona O, Di Paolo G, Wenk M R, Lüthi A, Kim W T, Takei K, Daniell L, Nemoto Y, Shears S B, Flavell R A, McCormick D A, De Camilli P (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell, 99(2): 179–188

DOI PMID

25
Cvrcková F, Rivero F, Bavlnka B (2004). Evolutionarily conserved modules in actin nucleation: lessons from Dictyostelium discoideum and plants. Review article. Protoplasma, 224(1–2): 15–31

PMID

26
Dawson A P (1997). Calcium signalling: how do IP3 receptors work? Curr Biol, 7(9): R544–R547

DOI PMID

27
de Graaf B H J, Cheung A Y, Andreyeva T, Levasseur K, Kieliszewski M, Wu H M (2005). Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell, 17(9): 2564–2579

DOI PMID

28
Deeks M J, Cvrcková F, Machesky L M, Mikitová V, Ketelaar T, Zársky V, Davies B, Hussey P J (2005). Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol, 168(3): 529–540

DOI PMID

29
Deeks M J, Rodrigues C, Dimmock S, Ketelaar T, Maciver S K, Malhó R, Hussey P J (2007). Arabidopsis CAP1 – a key regulator of actin organisation and development. J Cell Sci, 120(Pt 15): 2609–2618

DOI PMID

30
Derksen J, Rutten T, Van Amstel T, de Win A, Doris F, Steer M (1995). Regulation of pollen tube growth. Acta Bot. Neerl., 44: 93–119

31
Dhonukshe P, Laxalt A M, Goedhart J, Gadella T W J, Munnik T (2003). Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell, 15(11): 2666–2679

DOI PMID

32
Dowd P E, Coursol S, Skirpan A L, Kao T H, Gilroy S (2006). Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell, 18(6): 1438–1453

DOI PMID

33
Drøbak B K, Watkins P A C, Valenta R, Dove S K, Lloyd C W, Staiger C J (1994). Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein, profilin. Plant J, 6(3): 389–400

DOI

34
Faix J, Grosse R (2006). Staying in shape with formins. Dev Cell, 10(6): 693–706

DOI PMID

35
Fan X, Hou J, Chen X, Chaudhry F, Staiger C J, Ren H Y (2004). Identification and characterization of a Ca2+-dependent actin filament-severing protein from lily pollen. Plant Physiol, 136(4): 3979–3989

DOI PMID

36
Franklin-Tong V E (1999). Signaling and the modulation of pollen tube growth. Plant Cell, 11(4): 727–738

DOI PMID

37
Franklin-Tong V E, Drøbak B K, Allan A C, Watkins P A C, Trewavas A J (1996). Growth of pollen tubes of Papaver rhoeas is regulated by a slow moving calcium wave propagated by inositol triphosphate. Plant Cell, 8(8): 1305–1321

DOI PMID

38
Fu Y, Li H, Yang Z (2002). The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell, 14(4): 777–794

DOI PMID

39
Fu Y, Wu G, Yang Z (2001). Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol, 152(5): 1019–1032

DOI PMID

40
Geitmann A, Snowman B N, Emons A M C, Franklin-Tong V E (2000). Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell, 12(7): 1239–1251

PMID

41
Gibbon B C, Kovar D R, Staiger C J (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell, 11(12): 2349–2363

PMID

42
Gibbon B C, Zonia L E, Kovar D R, Hussey P J, Staiger C J (1998). Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell, 10(6): 981–993

PMID

43
Goldschmidt-Clermont P J, Machesky L M, Baldassare J J, Pollard T D (1990). The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science, 247(4950): 1575– 1578

DOI PMID

44
Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z B (2005). A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol, 169(1): 127–138

DOI PMID

45
Gu Y, Vernoud V, Fu Y, Yang Z (2003). ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot, 54(380): 93–101

DOI PMID

46
Gu Y, Wang Z, Yang Z (2004). ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol, 7(5): 527–536

DOI PMID

47
Gungabissoon R A, Jiang C J, Drøbak B K, Maciver S K, Hussey P J (1998). Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J, 16(6): 689–696

DOI

48
Gungabissoon R A, Khan S, Hussey P J, Maciver S K (2001). Interaction of elongation factor 1alpha from Zea mays (ZmEF-1alpha) with F-actin and interplay with the maize actin severing protein, ZmADF3. Cell Motil Cytoskeleton, 49(2): 104–111

DOI PMID

49
Guo C Q, Ren H Y (2006). Formins: bringing new insights to the organization of actin cytoskeleton. Chin Sci Bull, 51(24): 2937–2943

DOI

50
Harris E S, Higgs H N (2004). Actin cytoskeleton: formins lead the way. Curr Biol, 14(13): R520–R522

DOI PMID

51
Harris E S, Rouiller I, Hanein D, Higgs H N (2006). Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. J Biol Chem, 281(20): 14383–14392

DOI PMID

52
Helling D, Possart A, Cottier S, Klahre U, Kost B (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell, 18(12): 3519–3534

DOI PMID

53
Hepler P K, Vidali L, Cheung A Y (2001). Polarized cell growth in higher plants. Annu Rev Cell Dev Biol, 17(1): 159–187

DOI PMID

54
Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N (2004). Actin polymerization-driven molecular movement of mDia1 in living cells. Science, 303(5666): 2007–2010

DOI PMID

55
Holdaway-Clarke T L, Feijo J A, Hackett G R, Kunkel J G, Hepler P K (1997). Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell, 9(11): 1999–2010

DOI PMID

56
Hong Z, Staiculescu M, Sun M, Levitan I, Forgacs G (2009). How phosphatidylinositol 4,5-bisphosphate regulates membrane- cytoskeleton interaction in endothelial cells? Biophysical Journal, 96: 395a

57
Hormanseder K, Obermeyer G, Foissner I (2005). Disturbance of endomembrane trafficking by brefeldin A and calyculin A reorganizes the actin cytoskeleton of Lilium longiflorum pollen tubes. Protoplasma, 227: 25–36

58
Huang S, Blanchoin L, Chaudhry F, Franklin-Tong V E, Staiger C J (2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem, 279(22): 23364–23375

DOI PMID

59
Huang S, Blanchoin L, Kovar D R, Staiger C J (2003). Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J Biol Chem, 278(45): 44832–44842

DOI PMID

60
Huang S, Gao L, Blanchoin L, Staiger C J (2006). Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell, 17(4): 1946–1958

DOI PMID

61
Huang S, Robinson R C, Gao L Y, Matsumoto T, Brunet A, Blanchoin L, Staiger C J (2005). Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. Plant Cell, 17(2): 486–501

DOI PMID

62
Hussey P J, Ketelaar T, Deeks M J (2006). Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol, 57(1): 109–125

DOI PMID

63
Hwang J U, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008). A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol, 18(24): 1907–1916

DOI PMID

64
Ingouff M, Fitz Gerald J N, Guérin C, Robert H, Sørensen M B, Van Damme D, Geelen D, Blanchoin L, Berger F (2005). Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol, 7(4): 374–380

DOI PMID

65
Khurana P, Henty J L, Huang S J, Staiger A M, Blanchoin L, Staiger C J (2010). Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. Plant Cell, 22(8): 2727–2748

DOI PMID

66
Kim S R, Kim Y W, An G (1993). Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol, 21(1): 39–45

DOI PMID

67
Klahre U, Friederich E, Kost B, Louvard D, Chua N H (2000). Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol, 122(1): 35–48

DOI PMID

68
Kost B (2008). Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol, 18(3): 119–127

DOI PMID

69
Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N H (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol, 145(2): 317–330

DOI PMID

70
Kost B, Spielhofer P, Chua N H (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J, 16(3): 393–401

DOI PMID

71
Kovar D R (2006). Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol, 18(1): 11–17

DOI PMID

72
Kovar D R, Yang P, Sale W S, Drøbak B K, Staiger C J (2001). Chlamydomonas reinhardtii produces a profilin with unusual biochemical properties. J Cell Sci, 114(Pt 23): 4293–4305

PMID

73
Kreis T, Vale R (1999). Guidebook to the cytoskeletal and motor proteins.New York: Oxford University Press

74
Kühtreiber W M, Jaffe L F (1990). Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol, 110(5): 1565–1573

DOI PMID

75
Lee Y J, Szumlanski A, Nielsen E, Yang Z B (2008). Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol, 181(7): 1155–1168

DOI PMID

76
Li H, Lin Y, Heath R M, Zhu M X, Yang Z (1999). Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell, 11(9): 1731–1742

PMID

77
Li H, Wu G, Ware D, Davis K R, Yang Z (1998). Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. Plant Physiol, 118(2): 407–417

DOI PMID

78
Li Y H, Shen Y, Cai C, Zhong C C, Zhu L, Yuan M, Ren H Y (2010). The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell, 22(8): 2710–2726

DOI PMID

79
Lord E M, Russell S D (2002). The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol, 18(1): 81–105

DOI PMID

80
Lord E M, Walling L L, Jauh G Y (1996). Cell adhesion in plants and its role in pollination. In: Smallwood M, Knox J P, Bowles D J, eds. Membranes: specialized functions in plants.Oxford, UK: BIOS Scientific Publishers, 21–38

81
Lovy-Wheeler A, Cárdenas L, Kunkel J G, Hepler P K (2007). Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil Cytoskeleton, 64(3): 217–232

DOI PMID

82
Lovy-Wheeler A, Kunkel J G, Allwood E G, Hussey P J, Hepler P K (2006). Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell, 18(9): 2182–2193

DOI PMID

83
Lovy-Wheeler A, Wilsen K L, Baskin T I, Hepler P K (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta, 221(1): 95–104

DOI PMID

84
Maciver S K, Hussey P J (2002). The ADF/cofilin family: actinremodeling proteins. Genome Biol, 3(5): 3007.1–3007.12

85
Malhó R (1998). The role of inositol(1,4,5)triphosphate in pollen tube growth and orientation. Sex Plant Reprod, 11: 231–235

DOI

86
Malhó R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A (2006). Signalling pathways in pollen germination and tube growth. Protoplasma, 228(1–3): 21–30

DOI PMID

87
Malhó R, Read N D, Pais M, Trewavas A J (1994). Role of cytosolic calcium in the reorientation of pollen tube growth. Plant J, 5(3): 331–341

DOI

88
Malhó R, Read N D, Trewavas A J, Pais M S (1995). Calcium channel activity during pollen tube growth and reorientation. Plant Cell, 7(8): 1173–1184

DOI PMID

89
Malhó R, Trewavas A J (1996). Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell, 8(11): 1935–1949

DOI PMID

90
Martin T F J (1998). Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol, 14(1): 231–264

DOI PMID

91
Mascarenhas J P (1993). Molecular mechanisms of pollen tube growth and differentiation. Plant Cell, 5(10): 1303–1314

DOI PMID

92
Mathur J (2005). Conservation of boundary extension mechanisms between plants and animals. J Cell Biol, 168(5): 679–682

DOI PMID

93
Messerli M, Robinson K R (1997). Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci, 110(Pt 11): 1269–1278

PMID

94
Michelot A, Guérin C, Huang S J, Ingouff M, Richard S, Rodiuc N, Staiger C J, Blanchoin L (2005). The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell, 17(8): 2296–2313

DOI PMID

95
Molendijk A J, Bischoff F, Rajendrakumar C S V, Friml J, Braun M, Gilroy S, Palme K (2001). Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J, 20(11): 2779–2788

DOI PMID

96
Monteiro D, Castanho Coelho P, Rodrigues C, Camacho L, Quader H, Malhó R (2005a). Modulation of endocytosis in pollen tube growth by phosphoinositides and phospholipids. Protoplasma, 226(1–2): 31–38

DOI PMID

97
Monteiro D, Liu Q, Lisboa S, Scherer G E F, Quader H, Malhó R (2005b). Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot, 56(416): 1665–1674

DOI PMID

98
Moseley J B, Goode B L (2005). Differential activities and regulation of Saccharomyces cerevisiae formin proteins Bni1 and Bnr1 by Bud6. J Biol Chem, 280(30): 28023–28033

DOI PMID

99
Munnik T (2001). Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci, 6(5): 227–233

DOI PMID

100
Nakayasu T, Yokota E, Shimmen T (1998). Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem Biophys Res Commun, 249(1): 61–65

DOI PMID

101
O’Luanaigh N, Pardo R, Fensome A, Allen-Baume V, Jones D, Holt M R, Cockcroft S (2002). Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane ruffling in cultured mast cells. Mol Biol Cell, 13(10): 3730–3746

DOI PMID

102
Okreglak V, Drubin D G (2010). Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway. J Cell Biol, 188(6): 769–777

DOI PMID

103
Perelroizen I, Didry D, Christensen H, Chua N H, Carlier M F (1996). Role of nucleotide exchange and hydrolysis in the function of profilin in action assembly. J Biol Chem, 271(21): 12302–12309

DOI PMID

104
Pierson E S, Miller D D, Callaham D A, Shipley A M, Rivers B A, Cresti M, Hepler P K (1994). Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell, 6(12): 1815–1828

PMID

105
Pina C, Pinto F, Feijó J A, Becker J D (2005). Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol, 138(2): 744–756

DOI PMID

106
Pollard T D, Blanchoin L, Mullins R D (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct, 29(1): 545–576

DOI PMID

107
Powner D J, Wakelam M J O (2002). The regulation of phospholipase D by inositol phospholipids and small GTPases. FEBS Lett, 531(1): 62–64

DOI PMID

108
Rathore K S, Cork R J, Robinson K R (1991). A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol, 148(2): 612–619

DOI PMID

109
Rato C, Monteiro D, Hepler P K, Malhó R (2004). Calmodulin activity and cAMP signalling modulate growth and apical secretion in pollen tubes. Plant J, 38(6): 887–897

DOI PMID

110
Raucher D, Stauffer T, Chen W, Shen K, Guo S, York J D, Sheetz M P, Meyer T (2000). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell, 100(2): 221–228

DOI PMID

111
Ren H Y, Xiang Y (2007). The function of actin-binding proteins in pollen tube growth. Protoplasma, 230(3–4): 171–182

DOI PMID

112
Ruzicka D R, Kandasamy M K, McKinney E C, Burgos-Rivera B, Meagher R B (2007). The ancient subclasses of Arabidopsis actin depolymerizing factor genes exhibit novel and differential expression. Plant J, 52(3): 460–472

DOI PMID

113
Sagot I, Klee S K, Pellman D (2002). Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol, 4(1): 42–50

PMID

114
Snowman B N, Kovar D R, Shevchenko G, Franklin-Tong V E, Staiger C J (2002). Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell, 14(10): 2613–2626

DOI PMID

115
Staiger C J, Blanchoin L (2006). Actin dynamics: old friends with new stories. Curr Opin Plant Biol, 9(6): 554–562

DOI PMID

116
Staiger C J, Hussey P J (2004). Actin and actin-modulating proteins. In Hussey P J, ed. The Plant Cytoskeleton in Cell Differentiation and Development.Oxford: Blackwell Publishers, pp. 32–80

117
Staiger C J, Poulter N S, Henty J L, Franklin-Tong V E, Blanchoin L (2010). Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot, 61(7): 1969–1986

DOI PMID

118
Staiger C J, Sheahan M B, Khurana P, Wang X, McCurdy D W, Blanchoin L (2009). Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J Cell Biol, 184(2): 269–280

DOI PMID

119
Steer M W, Steer J M (1989). Pollen tube tip growth. New Phytol, 111(3): 323–358

DOI

120
Stevenson J M, Perera I Y, Heilmann I, Persson S, Boss W F (2000). Inositol signaling and plant growth. Trends Plant Sci, 5(6): 252–258

DOI PMID

121
Sweeney D A, Siddhanta A, Shields D (2002). Fragmentation and re-assembly of the Golgi apparatus in vitro. A requirement for phosphatidic acid and phosphatidylinositol 4,5-bisphosphate synthesis. J Biol Chem, 277(4): 3030–3039

DOI PMID

122
Sze H, Li X, Palmgren M G (1999). Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis. Plant Cell, 11(4): 677–690

DOI PMID

123
Szymanski D B, Cosgrove D J (2009). Dynamic co-ordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol, 19(17): 800–811

DOI

124
Tao Z H, Ren H Y (2003) Regulation of gelsolin to plant actin filaments and its distribution in pollen. Science in China, 46(4): 379–388

DOI

125
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A (2009). Actin bundling in plants. Cell Motil Cytoskeleton, 66(11): 940–957

DOI PMID

126
Thomas S G, Huang S, Li S, Staiger C J, Franklin-Tong V E (2006). Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol, 174(2): 221–229

DOI PMID

127
Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991). Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science, 253(5019): 557–560

DOI PMID

128
Valenta R, Ferreira F, Grote M, Swoboda I, Vrtala S, Duchêne M, Deviller P, Meagher R B, McKinney E, Heberle-Bors E (1993). Identification of profilin as an actin-binding protein in higher plants. J Biol Chem, 268(30): 22777–22781

PMID

129
Vavylonis D, Wu J Q, Hao S, O’Shaughnessy B, Pollard T D (2008). Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science, 319(5859): 97–100

DOI PMID

130
Vernoud V, Horton A C, Yang Z, Nielsen E (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol, 131(3): 1191–1208

DOI PMID

131
Vidali L, Hepler P K (1997). Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton, 36(4): 323–338

DOI PMID

132
Vidali L, McKenna S T, Hepler P K (2001). Actin polymerization is essential for pollen tube growth. Mol Biol Cell, 12(8): 2534–2545

PMID

133
Vidali L, Rounds C M, Hepler P K, Bezanilla M, Baxter I (2009). Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONE, 4(5): e5744

DOI PMID

134
Wang T, Xiang Y, Hou J, Ren H Y (2008). ABP41 is involved in the pollen tube development via fragmenting actin filaments. Mol Plant, 1(6): 1048–1055

DOI PMID

135
Way M, Weeds A (1988). Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J Mol Biol, 203(4): 1127–1133

DOI PMID

136
Wilsen K L, Lovy-Wheeler A, Voigt B, Menzel D, Kunkel J G, Hepler P K (2006). Imaging the actin cytoskeleton in growing pollen tubes. Sex Plant Reprod, 19(2): 51–62

DOI

137
Wu G, Gu Y, Li S, Yang Z (2001). A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell, 13(12): 2841–2856

PMID

138
Wu W, Yan L F (1997). Identification of gelsolin by western blotting in maize pollen. Chin Sci Bull, 42: 1784–1786

139
Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, Hussey P J, Ren H (2007). ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling. Plant Cell, 19(6): 1930–1946

DOI PMID

140
Yang Z (2002). Small GTPases: versatile signaling switches in plants. Plant Cell, 14(Suppl): S375–S388

PMID

141
Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z (2009). Arabidopsis Formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell, 21:3868–3884

DOI

142
Yi K X, Guo C Q, Chen D, Zhao B, Yang B, Ren H (2005). Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol, 138(2): 1071–1082

DOI PMID

143
Yokota E, Muto S, Shimmen T (2000). Calcium-calmodulin suppresses the filamentous actin-binding activity of a 135-kilodalton actin-bundling protein isolated from lily pollen tubes. Plant Physiol, 123(2): 645–654

DOI PMID

144
Yokota E, Shimmen K T T, Shimmen T (1998). Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. Plant Physiol, 116(4): 1421–1429

DOI PMID

145
Yokota E, Shimmen T (1999). The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta, 209(2): 264–266

DOI PMID

146
Yokota E, Vidali L, Tominaga M, Tahara H, Orii H, Morizane Y, Hepler P K, Shimmen T (2003). Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells. Plant Cell Physiol, 44(10): 1088–1099

DOI PMID

147
Zhang H, Qu X L, Bao C C, Khurana P, Wang Q N, Xie Y R, Zheng Y Y, Chen N Z, Blanchoin L, Staiger C J, Huang S J (2010). Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell, 22(8): 2749–2767

DOI PMID

148
Zheng Z L, Yang Z (2000). The Rrop GTPase switch turns on polar growth in pollen. Trends Plant Sci, 5(7): 298–303

DOI PMID

149
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol, 136(1): 2621–2632

DOI PMID

Outlines

/