Actin organization and regulation during pollen tube growth
Received date: 08 Nov 2010
Accepted date: 24 Nov 2010
Published date: 01 Feb 2011
Copyright
Pollen is the male gametophyte of seed plants and its tube growth is essential for successful fertilization. Mounting evidence has demonstrated that actin organization and regulation plays a central role in the process of its germination and polarized growth. The native structures and dynamics of actin are subtly modulated by many factors among which numerous actin binding proteins (ABPs) are the most direct and significant regulators. Upstream signals such as Ca2+, PIP2 (phosphatidylinositol-4,5-bis-phosphate) and GTPases can also indirectly act on actin organization through several ABPs. Under such elaborate regulation, actin structures show dynamically continuous modulation to adapt to the BoldItalic biologic functions to mediate secretory vesicle transportation and fusion, which lead to normal growth of the pollen tube. Many encouraging progress has been made in the connection between actin regulation and pollen tube growth in recent years. In this review, we summarize different factors that affect actin organization in pollen tube growth and highlight relative research progress.
Xiuhua XUE , Fei DU , Jinsheng ZHU , Haiyun REN . Actin organization and regulation during pollen tube growth[J]. Frontiers in Biology, 2011 , 06(01) : 40 -51 . DOI: 10.1007/s11515-011-1110-1
1 |
Allwood E G, Anthony R G, Smertenko A P, Reichelt S, Drøbak B K, Doonan J H, Weeds A G, Hussey P J (2002). Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell, 14(11): 2915–2927
|
2 |
Anderson R A, Boronenkov I V, Doughman S D, Kunz J, Loijens J C (1999). Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem, 274(15): 9907–9910
|
3 |
Andrianantoandro E, Pollard T D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell, 24(1): 13–23
|
4 |
Bamburg J R, Bernstein B W (2008). ADF/cofilin. Curr Biol, 18(7): R273–R275
|
5 |
Bar-Sagi D, Hall A (2000). Ras and Rho GTPases: a family reunion. Cell, 103(2): 227–238
|
6 |
Bedinger P (1992). The remarkable biology of pollen. Plant Cell, 4(8): 879–887
|
7 |
Blanchoin L, Pollard T D (1999). Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. J Biol Chem, 274(22): 15538–15546
|
8 |
Blanchoin L, Staiger C J (2010). Plant formins: diverse isoforms and unique molecular mechanism. Biochim Biophys Acta, 1803(2): 201–206
|
9 |
Cai G, Cresti M (2008). Organelle motility in the pollen tube: a tale of 20 years. J Exp Bot, Page 1 of 15
|
10 |
Cárdenas L, Lovy-Wheeler A, Kunkel J G, Hepler P K (2008). Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol, 146(4): 1611–1621
|
11 |
Carlier M F, Laurent V, Santolini J, Melki R, Didry D, Xia G X, Hong Y, Chua N H, Pantaloni D (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol, 136(6): 1307–1322
|
12 |
Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M (2008). Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol, 25(12): 2717–2733
|
13 |
Chaudhry F, Guérin C, von Witsch M, Blanchoin L, Staiger C J (2007). Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin. Mol Biol Cell, 18(8): 3002–3014
|
14 |
Chen C Y, Cheung A Y, Wu H M (2003). Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell, 15(1): 237–249
|
15 |
Chen C Y, Wong E I, Vidali L, Estavillo A, Hepler P K, Wu H M, Cheung A Y (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell, 14(9): 2175–2190
|
16 |
Chen H, Bernstein B W, Sneider J M, Boyle J A, Minamide L S, Bamburg J R (2004). In vitro activity differences between proteins of the ADF/cofilin family define two distinct subgroups. Biochemistry, 43(22): 7127–7142
|
17 |
Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluska F, Samaj J, Lin J (2009). Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiol, 149(2): 1111–1126
|
18 |
Cheung A Y, Duan Q H, Costa S S, de Graaf B H, Di Stilio V S, Feijo J, Wu H M (2008). The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant, 1(4): 686–702
|
19 |
Cheung A Y, Niroomand S, Zou Y J, Wu H M (2010). A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA, 107(37): 16390–16395
|
20 |
Cheung A Y, Wu H M (2004). Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell, 16(1): 257–269
|
21 |
Cheung A Y, Wu H M (2007). Structural and functional compartmentalization in pollen tubes. J Exp Bot, 58(1): 75–82
|
22 |
Cheung A Y, Wu H M (2008). Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol, 59(1): 547–572
|
23 |
Cooper J A, Sept D (2008). New insights into mechanism and regulation of actin capping protein. Int Rev Cell Mol Biol, 267: 183–206
|
24 |
Cremona O, Di Paolo G, Wenk M R, Lüthi A, Kim W T, Takei K, Daniell L, Nemoto Y, Shears S B, Flavell R A, McCormick D A, De Camilli P (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell, 99(2): 179–188
|
25 |
Cvrcková F, Rivero F, Bavlnka B (2004). Evolutionarily conserved modules in actin nucleation: lessons from Dictyostelium discoideum and plants. Review article. Protoplasma, 224(1–2): 15–31
|
26 |
Dawson A P (1997). Calcium signalling: how do IP3 receptors work? Curr Biol, 7(9): R544–R547
|
27 |
de Graaf B H J, Cheung A Y, Andreyeva T, Levasseur K, Kieliszewski M, Wu H M (2005). Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell, 17(9): 2564–2579
|
28 |
Deeks M J, Cvrcková F, Machesky L M, Mikitová V, Ketelaar T, Zársky V, Davies B, Hussey P J (2005). Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol, 168(3): 529–540
|
29 |
Deeks M J, Rodrigues C, Dimmock S, Ketelaar T, Maciver S K, Malhó R, Hussey P J (2007). Arabidopsis CAP1 – a key regulator of actin organisation and development. J Cell Sci, 120(Pt 15): 2609–2618
|
30 |
Derksen J, Rutten T, Van Amstel T, de Win A, Doris F, Steer M (1995). Regulation of pollen tube growth. Acta Bot. Neerl., 44: 93–119
|
31 |
Dhonukshe P, Laxalt A M, Goedhart J, Gadella T W J, Munnik T (2003). Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell, 15(11): 2666–2679
|
32 |
Dowd P E, Coursol S, Skirpan A L, Kao T H, Gilroy S (2006). Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell, 18(6): 1438–1453
|
33 |
Drøbak B K, Watkins P A C, Valenta R, Dove S K, Lloyd C W, Staiger C J (1994). Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein, profilin. Plant J, 6(3): 389–400
|
34 |
Faix J, Grosse R (2006). Staying in shape with formins. Dev Cell, 10(6): 693–706
|
35 |
Fan X, Hou J, Chen X, Chaudhry F, Staiger C J, Ren H Y (2004). Identification and characterization of a Ca2+-dependent actin filament-severing protein from lily pollen. Plant Physiol, 136(4): 3979–3989
|
36 |
Franklin-Tong V E (1999). Signaling and the modulation of pollen tube growth. Plant Cell, 11(4): 727–738
|
37 |
Franklin-Tong V E, Drøbak B K, Allan A C, Watkins P A C, Trewavas A J (1996). Growth of pollen tubes of Papaver rhoeas is regulated by a slow moving calcium wave propagated by inositol triphosphate. Plant Cell, 8(8): 1305–1321
|
38 |
Fu Y, Li H, Yang Z (2002). The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell, 14(4): 777–794
|
39 |
Fu Y, Wu G, Yang Z (2001). Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol, 152(5): 1019–1032
|
40 |
Geitmann A, Snowman B N, Emons A M C, Franklin-Tong V E (2000). Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell, 12(7): 1239–1251
|
41 |
Gibbon B C, Kovar D R, Staiger C J (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell, 11(12): 2349–2363
|
42 |
Gibbon B C, Zonia L E, Kovar D R, Hussey P J, Staiger C J (1998). Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell, 10(6): 981–993
|
43 |
Goldschmidt-Clermont P J, Machesky L M, Baldassare J J, Pollard T D (1990). The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science, 247(4950): 1575– 1578
|
44 |
Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z B (2005). A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol, 169(1): 127–138
|
45 |
Gu Y, Vernoud V, Fu Y, Yang Z (2003). ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot, 54(380): 93–101
|
46 |
Gu Y, Wang Z, Yang Z (2004). ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol, 7(5): 527–536
|
47 |
Gungabissoon R A, Jiang C J, Drøbak B K, Maciver S K, Hussey P J (1998). Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J, 16(6): 689–696
|
48 |
Gungabissoon R A, Khan S, Hussey P J, Maciver S K (2001). Interaction of elongation factor 1alpha from Zea mays (ZmEF-1alpha) with F-actin and interplay with the maize actin severing protein, ZmADF3. Cell Motil Cytoskeleton, 49(2): 104–111
|
49 |
Guo C Q, Ren H Y (2006). Formins: bringing new insights to the organization of actin cytoskeleton. Chin Sci Bull, 51(24): 2937–2943
|
50 |
Harris E S, Higgs H N (2004). Actin cytoskeleton: formins lead the way. Curr Biol, 14(13): R520–R522
|
51 |
Harris E S, Rouiller I, Hanein D, Higgs H N (2006). Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. J Biol Chem, 281(20): 14383–14392
|
52 |
Helling D, Possart A, Cottier S, Klahre U, Kost B (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell, 18(12): 3519–3534
|
53 |
Hepler P K, Vidali L, Cheung A Y (2001). Polarized cell growth in higher plants. Annu Rev Cell Dev Biol, 17(1): 159–187
|
54 |
Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N (2004). Actin polymerization-driven molecular movement of mDia1 in living cells. Science, 303(5666): 2007–2010
|
55 |
Holdaway-Clarke T L, Feijo J A, Hackett G R, Kunkel J G, Hepler P K (1997). Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell, 9(11): 1999–2010
|
56 |
Hong Z, Staiculescu M, Sun M, Levitan I, Forgacs G (2009). How phosphatidylinositol 4,5-bisphosphate regulates membrane- cytoskeleton interaction in endothelial cells? Biophysical Journal, 96: 395a
|
57 |
Hormanseder K, Obermeyer G, Foissner I (2005). Disturbance of endomembrane trafficking by brefeldin A and calyculin A reorganizes the actin cytoskeleton of Lilium longiflorum pollen tubes. Protoplasma, 227: 25–36
|
58 |
Huang S, Blanchoin L, Chaudhry F, Franklin-Tong V E, Staiger C J (2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem, 279(22): 23364–23375
|
59 |
Huang S, Blanchoin L, Kovar D R, Staiger C J (2003). Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J Biol Chem, 278(45): 44832–44842
|
60 |
Huang S, Gao L, Blanchoin L, Staiger C J (2006). Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell, 17(4): 1946–1958
|
61 |
Huang S, Robinson R C, Gao L Y, Matsumoto T, Brunet A, Blanchoin L, Staiger C J (2005). Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. Plant Cell, 17(2): 486–501
|
62 |
Hussey P J, Ketelaar T, Deeks M J (2006). Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol, 57(1): 109–125
|
63 |
Hwang J U, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008). A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol, 18(24): 1907–1916
|
64 |
Ingouff M, Fitz Gerald J N, Guérin C, Robert H, Sørensen M B, Van Damme D, Geelen D, Blanchoin L, Berger F (2005). Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol, 7(4): 374–380
|
65 |
Khurana P, Henty J L, Huang S J, Staiger A M, Blanchoin L, Staiger C J (2010). Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. Plant Cell, 22(8): 2727–2748
|
66 |
Kim S R, Kim Y W, An G (1993). Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol, 21(1): 39–45
|
67 |
Klahre U, Friederich E, Kost B, Louvard D, Chua N H (2000). Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol, 122(1): 35–48
|
68 |
Kost B (2008). Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol, 18(3): 119–127
|
69 |
Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N H (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol, 145(2): 317–330
|
70 |
Kost B, Spielhofer P, Chua N H (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J, 16(3): 393–401
|
71 |
Kovar D R (2006). Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol, 18(1): 11–17
|
72 |
Kovar D R, Yang P, Sale W S, Drøbak B K, Staiger C J (2001). Chlamydomonas reinhardtii produces a profilin with unusual biochemical properties. J Cell Sci, 114(Pt 23): 4293–4305
|
73 |
Kreis T, Vale R (1999). Guidebook to the cytoskeletal and motor proteins.New York: Oxford University Press
|
74 |
Kühtreiber W M, Jaffe L F (1990). Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol, 110(5): 1565–1573
|
75 |
Lee Y J, Szumlanski A, Nielsen E, Yang Z B (2008). Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol, 181(7): 1155–1168
|
76 |
Li H, Lin Y, Heath R M, Zhu M X, Yang Z (1999). Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell, 11(9): 1731–1742
|
77 |
Li H, Wu G, Ware D, Davis K R, Yang Z (1998). Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. Plant Physiol, 118(2): 407–417
|
78 |
Li Y H, Shen Y, Cai C, Zhong C C, Zhu L, Yuan M, Ren H Y (2010). The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell, 22(8): 2710–2726
|
79 |
Lord E M, Russell S D (2002). The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol, 18(1): 81–105
|
80 |
Lord E M, Walling L L, Jauh G Y (1996). Cell adhesion in plants and its role in pollination. In: Smallwood M, Knox J P, Bowles D J, eds. Membranes: specialized functions in plants.Oxford, UK: BIOS Scientific Publishers, 21–38
|
81 |
Lovy-Wheeler A, Cárdenas L, Kunkel J G, Hepler P K (2007). Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil Cytoskeleton, 64(3): 217–232
|
82 |
Lovy-Wheeler A, Kunkel J G, Allwood E G, Hussey P J, Hepler P K (2006). Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell, 18(9): 2182–2193
|
83 |
Lovy-Wheeler A, Wilsen K L, Baskin T I, Hepler P K (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta, 221(1): 95–104
|
84 |
Maciver S K, Hussey P J (2002). The ADF/cofilin family: actinremodeling proteins. Genome Biol, 3(5): 3007.1–3007.12
|
85 |
Malhó R (1998). The role of inositol(1,4,5)triphosphate in pollen tube growth and orientation. Sex Plant Reprod, 11: 231–235
|
86 |
Malhó R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A (2006). Signalling pathways in pollen germination and tube growth. Protoplasma, 228(1–3): 21–30
|
87 |
Malhó R, Read N D, Pais M, Trewavas A J (1994). Role of cytosolic calcium in the reorientation of pollen tube growth. Plant J, 5(3): 331–341
|
88 |
Malhó R, Read N D, Trewavas A J, Pais M S (1995). Calcium channel activity during pollen tube growth and reorientation. Plant Cell, 7(8): 1173–1184
|
89 |
Malhó R, Trewavas A J (1996). Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell, 8(11): 1935–1949
|
90 |
Martin T F J (1998). Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol, 14(1): 231–264
|
91 |
Mascarenhas J P (1993). Molecular mechanisms of pollen tube growth and differentiation. Plant Cell, 5(10): 1303–1314
|
92 |
Mathur J (2005). Conservation of boundary extension mechanisms between plants and animals. J Cell Biol, 168(5): 679–682
|
93 |
Messerli M, Robinson K R (1997). Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci, 110(Pt 11): 1269–1278
|
94 |
Michelot A, Guérin C, Huang S J, Ingouff M, Richard S, Rodiuc N, Staiger C J, Blanchoin L (2005). The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell, 17(8): 2296–2313
|
95 |
Molendijk A J, Bischoff F, Rajendrakumar C S V, Friml J, Braun M, Gilroy S, Palme K (2001). Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J, 20(11): 2779–2788
|
96 |
Monteiro D, Castanho Coelho P, Rodrigues C, Camacho L, Quader H, Malhó R (2005a). Modulation of endocytosis in pollen tube growth by phosphoinositides and phospholipids. Protoplasma, 226(1–2): 31–38
|
97 |
Monteiro D, Liu Q, Lisboa S, Scherer G E F, Quader H, Malhó R (2005b). Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot, 56(416): 1665–1674
|
98 |
Moseley J B, Goode B L (2005). Differential activities and regulation of Saccharomyces cerevisiae formin proteins Bni1 and Bnr1 by Bud6. J Biol Chem, 280(30): 28023–28033
|
99 |
Munnik T (2001). Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci, 6(5): 227–233
|
100 |
Nakayasu T, Yokota E, Shimmen T (1998). Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem Biophys Res Commun, 249(1): 61–65
|
101 |
O’Luanaigh N, Pardo R, Fensome A, Allen-Baume V, Jones D, Holt M R, Cockcroft S (2002). Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane ruffling in cultured mast cells. Mol Biol Cell, 13(10): 3730–3746
|
102 |
Okreglak V, Drubin D G (2010). Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway. J Cell Biol, 188(6): 769–777
|
103 |
Perelroizen I, Didry D, Christensen H, Chua N H, Carlier M F (1996). Role of nucleotide exchange and hydrolysis in the function of profilin in action assembly. J Biol Chem, 271(21): 12302–12309
|
104 |
Pierson E S, Miller D D, Callaham D A, Shipley A M, Rivers B A, Cresti M, Hepler P K (1994). Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell, 6(12): 1815–1828
|
105 |
Pina C, Pinto F, Feijó J A, Becker J D (2005). Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol, 138(2): 744–756
|
106 |
Pollard T D, Blanchoin L, Mullins R D (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct, 29(1): 545–576
|
107 |
Powner D J, Wakelam M J O (2002). The regulation of phospholipase D by inositol phospholipids and small GTPases. FEBS Lett, 531(1): 62–64
|
108 |
Rathore K S, Cork R J, Robinson K R (1991). A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol, 148(2): 612–619
|
109 |
Rato C, Monteiro D, Hepler P K, Malhó R (2004). Calmodulin activity and cAMP signalling modulate growth and apical secretion in pollen tubes. Plant J, 38(6): 887–897
|
110 |
Raucher D, Stauffer T, Chen W, Shen K, Guo S, York J D, Sheetz M P, Meyer T (2000). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell, 100(2): 221–228
|
111 |
Ren H Y, Xiang Y (2007). The function of actin-binding proteins in pollen tube growth. Protoplasma, 230(3–4): 171–182
|
112 |
Ruzicka D R, Kandasamy M K, McKinney E C, Burgos-Rivera B, Meagher R B (2007). The ancient subclasses of Arabidopsis actin depolymerizing factor genes exhibit novel and differential expression. Plant J, 52(3): 460–472
|
113 |
Sagot I, Klee S K, Pellman D (2002). Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol, 4(1): 42–50
|
114 |
Snowman B N, Kovar D R, Shevchenko G, Franklin-Tong V E, Staiger C J (2002). Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell, 14(10): 2613–2626
|
115 |
Staiger C J, Blanchoin L (2006). Actin dynamics: old friends with new stories. Curr Opin Plant Biol, 9(6): 554–562
|
116 |
Staiger C J, Hussey P J (2004). Actin and actin-modulating proteins. In Hussey P J, ed. The Plant Cytoskeleton in Cell Differentiation and Development.Oxford: Blackwell Publishers, pp. 32–80
|
117 |
Staiger C J, Poulter N S, Henty J L, Franklin-Tong V E, Blanchoin L (2010). Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot, 61(7): 1969–1986
|
118 |
Staiger C J, Sheahan M B, Khurana P, Wang X, McCurdy D W, Blanchoin L (2009). Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J Cell Biol, 184(2): 269–280
|
119 |
Steer M W, Steer J M (1989). Pollen tube tip growth. New Phytol, 111(3): 323–358
|
120 |
Stevenson J M, Perera I Y, Heilmann I, Persson S, Boss W F (2000). Inositol signaling and plant growth. Trends Plant Sci, 5(6): 252–258
|
121 |
Sweeney D A, Siddhanta A, Shields D (2002). Fragmentation and re-assembly of the Golgi apparatus in vitro. A requirement for phosphatidic acid and phosphatidylinositol 4,5-bisphosphate synthesis. J Biol Chem, 277(4): 3030–3039
|
122 |
Sze H, Li X, Palmgren M G (1999). Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis. Plant Cell, 11(4): 677–690
|
123 |
Szymanski D B, Cosgrove D J (2009). Dynamic co-ordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol, 19(17): 800–811
|
124 |
Tao Z H, Ren H Y (2003) Regulation of gelsolin to plant actin filaments and its distribution in pollen. Science in China, 46(4): 379–388
|
125 |
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A (2009). Actin bundling in plants. Cell Motil Cytoskeleton, 66(11): 940–957
|
126 |
Thomas S G, Huang S, Li S, Staiger C J, Franklin-Tong V E (2006). Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol, 174(2): 221–229
|
127 |
Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991). Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science, 253(5019): 557–560
|
128 |
Valenta R, Ferreira F, Grote M, Swoboda I, Vrtala S, Duchêne M, Deviller P, Meagher R B, McKinney E, Heberle-Bors E (1993). Identification of profilin as an actin-binding protein in higher plants. J Biol Chem, 268(30): 22777–22781
|
129 |
Vavylonis D, Wu J Q, Hao S, O’Shaughnessy B, Pollard T D (2008). Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science, 319(5859): 97–100
|
130 |
Vernoud V, Horton A C, Yang Z, Nielsen E (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol, 131(3): 1191–1208
|
131 |
Vidali L, Hepler P K (1997). Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton, 36(4): 323–338
|
132 |
Vidali L, McKenna S T, Hepler P K (2001). Actin polymerization is essential for pollen tube growth. Mol Biol Cell, 12(8): 2534–2545
|
133 |
Vidali L, Rounds C M, Hepler P K, Bezanilla M, Baxter I (2009). Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONE, 4(5): e5744
|
134 |
Wang T, Xiang Y, Hou J, Ren H Y (2008). ABP41 is involved in the pollen tube development via fragmenting actin filaments. Mol Plant, 1(6): 1048–1055
|
135 |
Way M, Weeds A (1988). Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J Mol Biol, 203(4): 1127–1133
|
136 |
Wilsen K L, Lovy-Wheeler A, Voigt B, Menzel D, Kunkel J G, Hepler P K (2006). Imaging the actin cytoskeleton in growing pollen tubes. Sex Plant Reprod, 19(2): 51–62
|
137 |
Wu G, Gu Y, Li S, Yang Z (2001). A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell, 13(12): 2841–2856
|
138 |
Wu W, Yan L F (1997). Identification of gelsolin by western blotting in maize pollen. Chin Sci Bull, 42: 1784–1786
|
139 |
Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, Hussey P J, Ren H (2007). ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling. Plant Cell, 19(6): 1930–1946
|
140 |
Yang Z (2002). Small GTPases: versatile signaling switches in plants. Plant Cell, 14(Suppl): S375–S388
|
141 |
Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z (2009). Arabidopsis Formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell, 21:3868–3884
|
142 |
Yi K X, Guo C Q, Chen D, Zhao B, Yang B, Ren H (2005). Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol, 138(2): 1071–1082
|
143 |
Yokota E, Muto S, Shimmen T (2000). Calcium-calmodulin suppresses the filamentous actin-binding activity of a 135-kilodalton actin-bundling protein isolated from lily pollen tubes. Plant Physiol, 123(2): 645–654
|
144 |
Yokota E, Shimmen K T T, Shimmen T (1998). Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. Plant Physiol, 116(4): 1421–1429
|
145 |
Yokota E, Shimmen T (1999). The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta, 209(2): 264–266
|
146 |
Yokota E, Vidali L, Tominaga M, Tahara H, Orii H, Morizane Y, Hepler P K, Shimmen T (2003). Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells. Plant Cell Physiol, 44(10): 1088–1099
|
147 |
Zhang H, Qu X L, Bao C C, Khurana P, Wang Q N, Xie Y R, Zheng Y Y, Chen N Z, Blanchoin L, Staiger C J, Huang S J (2010). Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell, 22(8): 2749–2767
|
148 |
Zheng Z L, Yang Z (2000). The Rrop GTPase switch turns on polar growth in pollen. Trends Plant Sci, 5(7): 298–303
|
149 |
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol, 136(1): 2621–2632
|
/
〈 | 〉 |