REVIEW

Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia

  • Shirin Ferdowsi 1 ,
  • Shirin Azizidoost 2 ,
  • Nasim Ghafari 3 ,
  • Najmaldin Saki , 2,3
Expand
  • 1. Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
  • 2. Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 3. Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Received date: 24 Apr 2016

Accepted date: 20 Jun 2016

Published date: 30 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

BACKGROUND: Bone marrow mesenchymal stromal cells (BM-MSCs) are an essential cell type in the hematopoietic microenvironment. The question of whether MSCs from patients with different leukemias have cytogenetic abnormalities is controversial. In this study, we attempted to review the cytogenetic profiles of MSCs in patients with leukemia, and verify whether these profiles were related to different ex vivo culture conditions or to chronic or acute disease states. This information could be useful in clarifying the origin of MSCs and developing clinical applications for this cell type.

METHODS: A systematic literature search was performed using the PubMed search engine. Studies published over the past 15 years, i.e., between 1995 and January 2015, were considered for review. The following keywords were used: “cytogenetic,” “leukemia,” “bone marrow,” and “mesenchymal stromal cells.”

RESULTS: Some studies demonstrated that BM-MSCs are cytogenetically normal, whereas others provided evidence of aberrations in these cells.

CONCLUSIONS: Studying cytogenetic changes of MSCs in a variety of leukemias will help researchers understand the nature of these tumors and ensure the safety of human stem cells in clinical applications.

Cite this article

Shirin Ferdowsi , Shirin Azizidoost , Nasim Ghafari , Najmaldin Saki . Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia[J]. Frontiers in Biology, 2016 , 11(4) : 305 -310 . DOI: 10.1007/s11515-016-1408-0

Acknowledgements

We wish to thank all our colleagues in Golestan Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Compliance with ethics guidelines

Authors declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by the any of the authors.
1
Achille V, Mantelli M, Arrigo G, Novara F, Avanzini M A, Bernardo M E, Zuffardi O, Barosi G, Zecca M, Maccario R (2011). Cell-cycle phases and genetic profile of bone marrow-derived mesenchymal stromal cells expanded in vitro from healthy donors. J Cell Biochem, 112(7): 1817–1821

DOI PMID

2
Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne M N, Crinquette A, Dessoly J, Sciaini A K, Benbunan M, Chomienne C, Fermand J P, Marolleau J P, Larghero J (2007). Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia, 21(1): 158–163

DOI PMID

3
Avanzini M A, Bernardo M E, Novara F, Mantelli M, Poletto V, Villani L, Lenta E, Ingo D M, Achille V, Bonetti E, Massa M, Campanelli R, Fois G, Catarsi P, Gale R P, Moretta A, Aronica A, Maccario R, Acquafredda G, Lisini D, Zecca M, Zuffardi O, Locatelli F, Barosi G, Rosti V, the AGIMM Investigators (2014). Functional and genetic aberrations of in vitro-cultured marrow-derived mesenchymal stromal cells of patients with classical Philadelphia-negative myeloproliferative neoplasms. Leukemia, 28(8): 1742–1745

DOI PMID

4
Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N (2014). Bone marrow neoplastic niche in leukemia. Hematology, 19(4): 232–238

DOI PMID

5
Bacher U, Asenova S, Badbaran A, Zander A R, Alchalby H, Fehse B, Kröger N, Lange C, Ayuk F (2010). Bone marrow mesenchymal stromal cells remain of recipient origin after allogeneic SCT and do not harbor the JAK2V617F mutation in patients with myelofibrosis. Clin Exp Med, 10(3): 205–208

DOI PMID

6
Balakrishnan K, Burger J A, Quiroga M P, Henneberg M, Ayres M L, Wierda W G, Gandhi V (2010). Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood, 116(7): 1083–1091

DOI PMID

7
Bernasconi P (2008). Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review. Br J Haematol, 142(5): 695–708

DOI PMID

8
Bhatia R, McGlave P B, Dewald G W, Blazar B R, Verfaillie C M (1995). Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood, 85(12): 3636–3645

PMID

9
Blau O, Baldus C D, Hofmann W K, Thiel G, Nolte F, Burmeister T, Türkmen S, Benlasfer O, Schümann E, Sindram A, Molkentin M, Mundlos S, Keilholz U, Thiel E, Blau I W (2011). Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood, 118(20): 5583–5592

DOI PMID

10
Blau O, Hofmann W K, Baldus C D, Thiel G, Serbent V, Schümann E, Thiel E, Blau I W (2007). Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol, 35(2): 221–229

DOI PMID

11
Borovski T, De Sousa E Melo F, Vermeulen L, Medema J P (2011). Cancer stem cell niche: the place to be. Cancer Res, 71(3): 634–639

DOI PMID

12
Campioni D, Bardi M A, Cavazzini F, Tammiso E, Pezzolo E, Pregnolato E, Volta E, Cuneo A, Lanza F (2012). Cytogenetic and molecular cytogenetic profile of bone marrow-derived mesenchymal stromal cells in chronic and acute lymphoproliferative disorders. Ann Hematol, 91(10): 1563–1577

DOI PMID

13
Carrara R C, Orellana M D, Fontes A M, Palma P V, Kashima S, Mendes M R, Coutinho M A, Voltarelli J C, Covas D T (2007). Mesenchymal stem cells from patients with chronic myeloid leukemia do not express BCR-ABL and have absence of chimerism after allogeneic bone marrow transplant. Braz J Med Biol Res, 40(1): 57–67

DOI PMID

14
Choumerianou D M, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008). Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif, 41(6): 909–922

DOI PMID

15
Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Rème T, Bourin P (2007). Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia, 21(5): 1079–1088

PMID

16
Dimitriou H, Linardakis E, Martimianaki G, Stiakaki E, Perdikogianni C H, Charbord P, Kalmanti M (2008). Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy, 10(2): 125–133

DOI PMID

17
Ferretti E, Bertolotto M, Deaglio S, Tripodo C, Ribatti D, Audrito V, Blengio F, Matis S, Zupo S, Rossi D, Ottonello L, Gaidano G, Malavasi F, Pistoia V, Corcione A (2011). A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia, 25(8): 1268–1277

DOI PMID

18
Flores-Figueroa E, Arana-Trejo R M, Gutiérrez-Espíndola G, Pérez-Cabrera A, Mayani H (2005). Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res, 29(2): 215–224

DOI PMID

19
Garayoa M, Garcia J L, Santamaría C, Garcia-Gomez A, Blanco J F, Pandiella A, Hernández J M, Sanchez-Guijo F M, del Cañizo M C, Gutiérrez N C, San Miguel J F (2009). Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia, 23(8): 1515–1527

DOI PMID

20
Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L, Holy X, Gorin N C, Lopez M, Doucet C, Lataillade J J (2007). Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma, 48(10): 2032–2041

DOI PMID

21
Haniffa M A, Wang X N, Holtick U, Rae M, Isaacs J D, Dickinson A M, Hilkens C M, Collin M P (2007). Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol, 179(3): 1595–1604

DOI PMID

22
Huang J C, Basu S K, Zhao X, Chien S, Fang M, Oehler V G, Appelbaum F R, Becker P S (2015). Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J, 5(4): e302

DOI PMID

23
James C (2008). The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? ASH Education Program Book, 2008(1): 69–75

24
Jootar S, Pornprasertsud N, Petvises S, Rerkamnuaychoke B, Disthabanchong S, Pakakasama S, Ungkanont A, Hongeng S (2006). Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leuk Res, 30(12): 1493–1498

DOI PMID

25
Kastrinaki M C, Pontikoglou C, Klaus M, Stavroulaki E, Pavlaki K, Papadaki H A (2011). Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther, 6(2): 122–130

DOI PMID

26
Keating A (2006). Mesenchymal stromal cells. Curr Opin Hematol, 13(6): 419–425

DOI PMID

27
Kemp K, Morse R, Sanders K, Hows J, Donaldson C (2011). Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells. Ann Hematol, 90(7): 777–789

DOI PMID

28
Klaus M, Stavroulaki E, Kastrinaki M C, Fragioudaki P, Giannikou K, Psyllaki M, Pontikoglou C, Tsoukatou D, Mamalaki C, Papadaki H A (2010). Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cells Dev, 19(7): 1043–1054

DOI PMID

29
Lopez-Villar O, Garcia J L, Sanchez-Guijo F M, Robledo C, Villarón E M, Hernández-Campo P, Lopez-Holgado N, Diez-Campelo M, Barbado M V, Perez-Simon J A, Hernández-Rivas J M, San-Miguel J F, del Cañizo M C (2009). Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia, 23(4): 664–672

DOI PMID

30
Mahtouk K, Hose D, Rème T, De Vos J, Jourdan M, Moreaux J, Fiol G, Raab M, Jourdan E, Grau V, Moos M, Goldschmidt H, Baudard M, Rossi J F, Cremer F W, Klein B (2005). Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells. Oncogene, 24(21): 3512–3524

DOI PMID

31
Menendez P, Catalina P, Rodríguez R, Melen G J, Bueno C, Arriero M, García-Sánchez F, Lassaletta A, García-Sanz R, García-Castro J (2009). Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med, 206(13): 3131–3141

DOI PMID

32
Mercier F, Monczak Y, François M, Prchal J, Galipeau J (2009). Bone marrow mesenchymal stromal cells of patients with myeloproliferative disorders do not carry the JAK2-V617F mutation. Exp Hematol, 37(3): 416–420

DOI PMID

33
Mitsiades C S, McMillin D W, Klippel S, Hideshima T, Chauhan D, Richardson P G, Munshi N C, Anderson K C (2007). The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am, 21(6): 1007–1034, vii–viii

DOI PMID

34
Nussenzveig R H, Swierczek S I, Jelinek J, Gaikwad A, Liu E, Verstovsek S, Prchal J T (2007). Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol, 35(1): 32. e31–32,e39

35
Oliveira F M, Lucena-Araujo A R, Favarin M C, Palma P V, Rego E M, Falcão R P, Covas D T, Fontes A M (2013). Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH. Exp Hematol, 41(2): 198–208

DOI PMID

36
Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, Kido S, Inoue D, Matsumoto T (2005). Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood, 106(9): 3160–3165

DOI PMID

37
Pieri L, Guglielmelli P, Bogani C, Bosi A, Vannucchi A M, Consortium M D R, and the Myeloproliferative Disorders Research Consortium (MPD-RC) (2008). Mesenchymal stem cells from JAK2(V617F) mutant patients with primary myelofibrosis do not harbor JAK2 mutant allele. Leuk Res, 32(3): 516–517

DOI PMID

38
Pimenova M A, Parovichnikova E N, Kokhno A V, Domracheva E V, Manakova T E, Mal’tseva IuS, Konnova M L, Shishigina L A, Savchenko V G (2013). Cytogenetic characteristics of hematopoietic and stromal progenitor cells in myelodysplastic syndrome. Ter Arkh, 85(7): 34–42

PMID

39
Podar K, Richardson P G, Hideshima T, Chauhan D, Anderson K C (2007). The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol, 20(4): 597–612

DOI PMID

40
Ramasamy R, Lam E W, Soeiro I, Tisato V, Bonnet D, Dazzi F (2007). Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia, 21(2): 304–310

DOI PMID

41
Saki N, Abroun S, Farshdousti Hagh M, Asgharei F (2011). Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J, 13(3): 131–136

PMID

42
Shahrabi S, Azizidoost S, Shahjahani M, Rahim F, Ahmadzadeh A, Saki N (2014). New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia. Tumour Biol, 35(11): 10627–10633

DOI PMID

43
Soenen-Cornu V, Tourino C, Bonnet M L, Guillier M, Flamant S, Kotb R, Bernheim A, Bourhis J H, Preudhomme C, Fenaux P, Turhan A G (2005). Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene, 24(15): 2441–2448

DOI PMID

44
Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy J D Jr (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med, 349(26): 2483–2494

DOI PMID

45
Wallace S R, Oken M M, Lunetta K L, Panoskaltsis-Mortari A, Masellis A M (2001). Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer, 91(7): 1219–1230

DOI PMID

46
Wöhrer S, Rabitsch W, Shehata M, Kondo R, Esterbauer H, Streubel B, Sillaber C, Raderer M, Jaeger U, Zielinski C, Valent P (2007). Mesenchymal stem cells in patients with chronic myelogenous leukaemia or bi-phenotypic Ph+ acute leukaemia are not related to the leukaemic clone. Anticancer Res, 27(6B): 3837–3841

PMID

47
Yeh S P, Lo W J, Lin C L, Liao Y M, Lin C Y, Bai L Y, Liang J A, Chiu C F (2012). Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells. Ann Hematol, 91(2): 163–172

DOI PMID

48
Zdzisińska B, Bojarska-Junak A, Dmoszyńska A, Kandefer-Szerszeń M (2008). Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp (Warsz), 56(3): 207–221

DOI PMID

49
Zhan F, Huang Y, Colla S, Stewart J P, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy J D Jr (2006). The molecular classification of multiple myeloma. Blood, 108(6): 2020–2028

DOI PMID

Outlines

/