Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia
Received date: 24 Apr 2016
Accepted date: 20 Jun 2016
Published date: 30 Aug 2016
Copyright
BACKGROUND: Bone marrow mesenchymal stromal cells (BM-MSCs) are an essential cell type in the hematopoietic microenvironment. The question of whether MSCs from patients with different leukemias have cytogenetic abnormalities is controversial. In this study, we attempted to review the cytogenetic profiles of MSCs in patients with leukemia, and verify whether these profiles were related to different ex vivo culture conditions or to chronic or acute disease states. This information could be useful in clarifying the origin of MSCs and developing clinical applications for this cell type.
METHODS: A systematic literature search was performed using the PubMed search engine. Studies published over the past 15 years, i.e., between 1995 and January 2015, were considered for review. The following keywords were used: “cytogenetic,” “leukemia,” “bone marrow,” and “mesenchymal stromal cells.”
RESULTS: Some studies demonstrated that BM-MSCs are cytogenetically normal, whereas others provided evidence of aberrations in these cells.
CONCLUSIONS: Studying cytogenetic changes of MSCs in a variety of leukemias will help researchers understand the nature of these tumors and ensure the safety of human stem cells in clinical applications.
Key words: bone marrow; mesenchymal stromal cells; leukemia; cytogenetic; niche
Shirin Ferdowsi , Shirin Azizidoost , Nasim Ghafari , Najmaldin Saki . Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia[J]. Frontiers in Biology, 2016 , 11(4) : 305 -310 . DOI: 10.1007/s11515-016-1408-0
1 |
Achille V, Mantelli M, Arrigo G, Novara F, Avanzini M A, Bernardo M E, Zuffardi O, Barosi G, Zecca M, Maccario R (2011). Cell-cycle phases and genetic profile of bone marrow-derived mesenchymal stromal cells expanded in vitro from healthy donors. J Cell Biochem, 112(7): 1817–1821
|
2 |
Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne M N, Crinquette A, Dessoly J, Sciaini A K, Benbunan M, Chomienne C, Fermand J P, Marolleau J P, Larghero J (2007). Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia, 21(1): 158–163
|
3 |
Avanzini M A, Bernardo M E, Novara F, Mantelli M, Poletto V, Villani L, Lenta E, Ingo D M, Achille V, Bonetti E, Massa M, Campanelli R, Fois G, Catarsi P, Gale R P, Moretta A, Aronica A, Maccario R, Acquafredda G, Lisini D, Zecca M, Zuffardi O, Locatelli F, Barosi G, Rosti V, the AGIMM Investigators (2014). Functional and genetic aberrations of in vitro-cultured marrow-derived mesenchymal stromal cells of patients with classical Philadelphia-negative myeloproliferative neoplasms. Leukemia, 28(8): 1742–1745
|
4 |
Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N (2014). Bone marrow neoplastic niche in leukemia. Hematology, 19(4): 232–238
|
5 |
Bacher U, Asenova S, Badbaran A, Zander A R, Alchalby H, Fehse B, Kröger N, Lange C, Ayuk F (2010). Bone marrow mesenchymal stromal cells remain of recipient origin after allogeneic SCT and do not harbor the JAK2V617F mutation in patients with myelofibrosis. Clin Exp Med, 10(3): 205–208
|
6 |
Balakrishnan K, Burger J A, Quiroga M P, Henneberg M, Ayres M L, Wierda W G, Gandhi V (2010). Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood, 116(7): 1083–1091
|
7 |
Bernasconi P (2008). Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review. Br J Haematol, 142(5): 695–708
|
8 |
Bhatia R, McGlave P B, Dewald G W, Blazar B R, Verfaillie C M (1995). Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood, 85(12): 3636–3645
|
9 |
Blau O, Baldus C D, Hofmann W K, Thiel G, Nolte F, Burmeister T, Türkmen S, Benlasfer O, Schümann E, Sindram A, Molkentin M, Mundlos S, Keilholz U, Thiel E, Blau I W (2011). Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood, 118(20): 5583–5592
|
10 |
Blau O, Hofmann W K, Baldus C D, Thiel G, Serbent V, Schümann E, Thiel E, Blau I W (2007). Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol, 35(2): 221–229
|
11 |
Borovski T, De Sousa E Melo F, Vermeulen L, Medema J P (2011). Cancer stem cell niche: the place to be. Cancer Res, 71(3): 634–639
|
12 |
Campioni D, Bardi M A, Cavazzini F, Tammiso E, Pezzolo E, Pregnolato E, Volta E, Cuneo A, Lanza F (2012). Cytogenetic and molecular cytogenetic profile of bone marrow-derived mesenchymal stromal cells in chronic and acute lymphoproliferative disorders. Ann Hematol, 91(10): 1563–1577
|
13 |
Carrara R C, Orellana M D, Fontes A M, Palma P V, Kashima S, Mendes M R, Coutinho M A, Voltarelli J C, Covas D T (2007). Mesenchymal stem cells from patients with chronic myeloid leukemia do not express BCR-ABL and have absence of chimerism after allogeneic bone marrow transplant. Braz J Med Biol Res, 40(1): 57–67
|
14 |
Choumerianou D M, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008). Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif, 41(6): 909–922
|
15 |
Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Rème T, Bourin P (2007). Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia, 21(5): 1079–1088
|
16 |
Dimitriou H, Linardakis E, Martimianaki G, Stiakaki E, Perdikogianni C H, Charbord P, Kalmanti M (2008). Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy, 10(2): 125–133
|
17 |
Ferretti E, Bertolotto M, Deaglio S, Tripodo C, Ribatti D, Audrito V, Blengio F, Matis S, Zupo S, Rossi D, Ottonello L, Gaidano G, Malavasi F, Pistoia V, Corcione A (2011). A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia, 25(8): 1268–1277
|
18 |
Flores-Figueroa E, Arana-Trejo R M, Gutiérrez-Espíndola G, Pérez-Cabrera A, Mayani H (2005). Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res, 29(2): 215–224
|
19 |
Garayoa M, Garcia J L, Santamaría C, Garcia-Gomez A, Blanco J F, Pandiella A, Hernández J M, Sanchez-Guijo F M, del Cañizo M C, Gutiérrez N C, San Miguel J F (2009). Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia, 23(8): 1515–1527
|
20 |
Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L, Holy X, Gorin N C, Lopez M, Doucet C, Lataillade J J (2007). Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma, 48(10): 2032–2041
|
21 |
Haniffa M A, Wang X N, Holtick U, Rae M, Isaacs J D, Dickinson A M, Hilkens C M, Collin M P (2007). Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol, 179(3): 1595–1604
|
22 |
Huang J C, Basu S K, Zhao X, Chien S, Fang M, Oehler V G, Appelbaum F R, Becker P S (2015). Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J, 5(4): e302
|
23 |
James C (2008). The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? ASH Education Program Book, 2008(1): 69–75
|
24 |
Jootar S, Pornprasertsud N, Petvises S, Rerkamnuaychoke B, Disthabanchong S, Pakakasama S, Ungkanont A, Hongeng S (2006). Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leuk Res, 30(12): 1493–1498
|
25 |
Kastrinaki M C, Pontikoglou C, Klaus M, Stavroulaki E, Pavlaki K, Papadaki H A (2011). Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther, 6(2): 122–130
|
26 |
Keating A (2006). Mesenchymal stromal cells. Curr Opin Hematol, 13(6): 419–425
|
27 |
Kemp K, Morse R, Sanders K, Hows J, Donaldson C (2011). Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells. Ann Hematol, 90(7): 777–789
|
28 |
Klaus M, Stavroulaki E, Kastrinaki M C, Fragioudaki P, Giannikou K, Psyllaki M, Pontikoglou C, Tsoukatou D, Mamalaki C, Papadaki H A (2010). Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cells Dev, 19(7): 1043–1054
|
29 |
Lopez-Villar O, Garcia J L, Sanchez-Guijo F M, Robledo C, Villarón E M, Hernández-Campo P, Lopez-Holgado N, Diez-Campelo M, Barbado M V, Perez-Simon J A, Hernández-Rivas J M, San-Miguel J F, del Cañizo M C (2009). Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia, 23(4): 664–672
|
30 |
Mahtouk K, Hose D, Rème T, De Vos J, Jourdan M, Moreaux J, Fiol G, Raab M, Jourdan E, Grau V, Moos M, Goldschmidt H, Baudard M, Rossi J F, Cremer F W, Klein B (2005). Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells. Oncogene, 24(21): 3512–3524
|
31 |
Menendez P, Catalina P, Rodríguez R, Melen G J, Bueno C, Arriero M, García-Sánchez F, Lassaletta A, García-Sanz R, García-Castro J (2009). Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med, 206(13): 3131–3141
|
32 |
Mercier F, Monczak Y, François M, Prchal J, Galipeau J (2009). Bone marrow mesenchymal stromal cells of patients with myeloproliferative disorders do not carry the JAK2-V617F mutation. Exp Hematol, 37(3): 416–420
|
33 |
Mitsiades C S, McMillin D W, Klippel S, Hideshima T, Chauhan D, Richardson P G, Munshi N C, Anderson K C (2007). The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am, 21(6): 1007–1034, vii–viii
|
34 |
Nussenzveig R H, Swierczek S I, Jelinek J, Gaikwad A, Liu E, Verstovsek S, Prchal J T (2007). Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol, 35(1): 32. e31–32,e39
|
35 |
Oliveira F M, Lucena-Araujo A R, Favarin M C, Palma P V, Rego E M, Falcão R P, Covas D T, Fontes A M (2013). Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH. Exp Hematol, 41(2): 198–208
|
36 |
Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, Kido S, Inoue D, Matsumoto T (2005). Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood, 106(9): 3160–3165
|
37 |
Pieri L, Guglielmelli P, Bogani C, Bosi A, Vannucchi A M, Consortium M D R, and the Myeloproliferative Disorders Research Consortium (MPD-RC) (2008). Mesenchymal stem cells from JAK2(V617F) mutant patients with primary myelofibrosis do not harbor JAK2 mutant allele. Leuk Res, 32(3): 516–517
|
38 |
Pimenova M A, Parovichnikova E N, Kokhno A V, Domracheva E V, Manakova T E, Mal’tseva IuS, Konnova M L, Shishigina L A, Savchenko V G (2013). Cytogenetic characteristics of hematopoietic and stromal progenitor cells in myelodysplastic syndrome. Ter Arkh, 85(7): 34–42
|
39 |
Podar K, Richardson P G, Hideshima T, Chauhan D, Anderson K C (2007). The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol, 20(4): 597–612
|
40 |
Ramasamy R, Lam E W, Soeiro I, Tisato V, Bonnet D, Dazzi F (2007). Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia, 21(2): 304–310
|
41 |
Saki N, Abroun S, Farshdousti Hagh M, Asgharei F (2011). Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J, 13(3): 131–136
|
42 |
Shahrabi S, Azizidoost S, Shahjahani M, Rahim F, Ahmadzadeh A, Saki N (2014). New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia. Tumour Biol, 35(11): 10627–10633
|
43 |
Soenen-Cornu V, Tourino C, Bonnet M L, Guillier M, Flamant S, Kotb R, Bernheim A, Bourhis J H, Preudhomme C, Fenaux P, Turhan A G (2005). Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene, 24(15): 2441–2448
|
44 |
Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy J D Jr (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med, 349(26): 2483–2494
|
45 |
Wallace S R, Oken M M, Lunetta K L, Panoskaltsis-Mortari A, Masellis A M (2001). Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer, 91(7): 1219–1230
|
46 |
Wöhrer S, Rabitsch W, Shehata M, Kondo R, Esterbauer H, Streubel B, Sillaber C, Raderer M, Jaeger U, Zielinski C, Valent P (2007). Mesenchymal stem cells in patients with chronic myelogenous leukaemia or bi-phenotypic Ph+ acute leukaemia are not related to the leukaemic clone. Anticancer Res, 27(6B): 3837–3841
|
47 |
Yeh S P, Lo W J, Lin C L, Liao Y M, Lin C Y, Bai L Y, Liang J A, Chiu C F (2012). Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells. Ann Hematol, 91(2): 163–172
|
48 |
Zdzisińska B, Bojarska-Junak A, Dmoszyńska A, Kandefer-Szerszeń M (2008). Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp (Warsz), 56(3): 207–221
|
49 |
Zhan F, Huang Y, Colla S, Stewart J P, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy J D Jr (2006). The molecular classification of multiple myeloma. Blood, 108(6): 2020–2028
|
/
〈 | 〉 |