REVIEW

Real-time imaging of single synaptic vesicles in live neurons

  • Chenglong Yu 1 ,
  • Min Zhang 1 ,
  • Xianan Qin 2 ,
  • Xiaofeng Yang 1 ,
  • Hyokeun Park , 1,2,3
Expand
  • 1. Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 2. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • 3. State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Received date: 03 Feb 2016

Accepted date: 13 Apr 2016

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Recent advances in fluorescence microscopy have provided researchers with powerful new tools to visualize cellular processes occurring in real time, giving researchers an unprecedented opportunity to address many biological questions that were previously inaccessible. With respect to neurobiology, these real-time imaging techniques have deepened our understanding of molecular and cellular processes, including the movement and dynamics of single proteins and organelles in living cells. In this review, we summarize recent advances in the field of real-time imaging of single synaptic vesicles in live neurons.

Cite this article

Chenglong Yu , Min Zhang , Xianan Qin , Xiaofeng Yang , Hyokeun Park . Real-time imaging of single synaptic vesicles in live neurons[J]. Frontiers in Biology, 2016 , 11(2) : 109 -118 . DOI: 10.1007/s11515-016-1397-z

Acknowledgements

We thank Dr. Curtis Barrett and Dr. Sunghoe Chang for critically reading the manuscript and for providing constructive comments.
The authors declare no competing interest.
1
Alabi A A, Tsien R W (2012). Synaptic vesicle pools and dynamics. Cold Spring HarbPerspectBiol, 4(8): a013680

PMID

2
Alabi A A, Tsien R W (2013). Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol, 75: 393–422

PMID

3
Andreae L C, Fredj N B, Burrone J (2012). Independent vesicle pools underlie different modes of release during neuronal development. J Neurosci, 32(5): 1867–1874

PMID

4
Aravanis A M, Pyle J L, Tsien R W (2003). Single synaptic vesicles fusing transiently and successively without loss of identity. Nature, 423(6940): 643–647

PMID

5
Atasoy D, Ertunc M, Moulder K L, Blackwell J, Chung C, Su J, Kavalali E T (2008). Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J Neurosci, 28(40): 10151–10166

PMID

6
Axelrod D, Thompson N L, Burghardt T P (1983). Total internal inflection fluorescent microscopy. J Microsc, 129(Pt 1): 19–28

PMID

7
Baba K, Nishida K (2012).Single-molecule tracking in living cells using single quantum dot applications. Theranostics, 2(7): 655–667

PMID

8
Balaji J, Ryan T A (2007). Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A, 104(51): 20576–20581

PMID

9
Barroso M M(2011). Quantum Dots in Cell Biology. J Histochem Cytochem, 59: 237–251

10
Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793): 1642–1645

PMID

11
Bianchini P, Peres C, Oneto M, Galiani S, Vicidomini G, Diaspro A (2015). STED nanoscopy: a glimpse into the future. Cell Tissue Res, 360(1): 143–150

PMID

12
Blum C, Meixner A J, Subramaniam V (2004). Room temperature spectrally resolved single-molecule spectroscopy reveals new spectral forms and photophysical versatility of aequorea green fluorescent protein variants. Biophys J, 87(6): 4172–4179

PMID

13
Bottrill M, Green M (2011). Some aspects of quantum dot toxicity. Chem Commun (Camb), 47(25): 7039–7050

PMID

14
Buxbaum A R, Yoon Y J, Singer R H, Park H Y (2015). Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol, 25(8): 468–475

PMID

15
Chang Y P, Pinaud F, Antelman J, Weiss S (2008). Tracking bio-molecules in live cells using quantum dots. J Biophotonics, 1(4): 287–298

PMID

16
Chater T E, Goda Y (2014). The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci, 8: 401

PMID

17
Chéreau R, Tønnesen J, Nägerl U V (2015). STED microscopy for nanoscale imaging in living brain slices. Methods, 88: 57–66

PMID

18
Choquet D, Triller A (2013).The dynamic synapse. Neuron, 80(3): 691–703

PMID

19
Chung C, Barylko B, Leitz J, Liu X, Kavalali E T (2010). Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J Neurosci, 30(4): 1363–1376

PMID

20
Coelho M, Maghelli N, Tolić-Nørrelykke I M (2013). Single-molecule imaging in vivo: the dancing building blocks of the cell. Integr Biol (Camb), 5(5): 748–758

PMID

21
Dahan M, Lévi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003). Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 302(5644): 442–445

PMID

22
Darcy K J, Staras K, Collinson L M, Goda Y (2006). Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci, 9(3): 315–321

PMID

23
Deniz A A, Mukhopadhyay S, Lemke E A (2008). Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface, 5(18): 15–45

PMID

24
DePina A S, Wöllert T, Langford G M (2007). Membrane associated nonmuscle myosin II functions as a motor for actin-based vesicle transport in clam oocyte extracts. Cell Motil Cytoskeleton, 64(10): 739–755

PMID

25
Dreosti E, Lagnado L (2011). Optical reporters of synaptic activity in neural circuits. Exp Physiol, 96(1): 4–12

PMID

26
Duzdevich D, Greene E C (2013). Towards physiological complexity with in vitro single-molecule biophysics. Philos Trans R SocLond B BiolSci, 368(1611): 20120271

PMID

27
Fernandez-Alfonso T, Ryan T A (2008). A heterogeneous “resting” pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biol, 36(1-4): 87–100

PMID

28
Fernández-Suárez M, Ting A Y (2008). Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol, 9(12): 929–943

PMID

29
Fioravante D, Regehr W G (2011). Short-term forms of presynaptic plasticity. Curr Opin Neurobiol, 21(2): 269–274

PMID

30
Gandhi S P, Stevens C F (2003). Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature, 423(6940): 607–613

PMID

31
Giepmans B N, Adams S R, Ellisman M H, Tsien R Y (2006). The fluorescent toolbox for assessing protein location and function. Science, 312(5771): 217–224

PMID

32
Groc L, Choquet D (2006). AMPA and NMDA glutamate receptor trafficking: multiple roads for reaching and leaving the synapse. Cell Tissue Res, 326(2): 423–438

PMID

33
Gu H, Lazarenko R M, Koktysh D, Iacovitti L, Zhang Q (2015). A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses. Stem Cells Transl Med, 4(8): 887–893

PMID

34
Gust A, Zander A, Gietl A, Holzmeister P, Schulz S, Lalkens B, Tinnefeld P, Grohmann D (2014). A starting point for fluorescence-based single-molecule measurements in biomolecular research. Molecules, 19(10): 15824–15865

PMID

35
Haas B L, Matson J S, DiRita V J, Biteen J S (2014). Imaging live cells at the nanometer-scale with single-molecule microscopy: obstacles and achievements in experiment optimization for microbiology. Molecules, 19(8): 12116–12149

PMID

36
Harke B, Keller J, Ullal C K, Westphal V, Schönle A, Hell S W (2008). Resolution scaling in STED microscopy. Opt Express, 16(6): 4154–4162

PMID

37
Hell S W, Wichmann J (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11): 780–782

PMID

38
Herzog E, Nadrigny F, Silm K, Biesemann C, Helling I, Bersot T, Steffens H, Schwartzmann R, Nägerl U V, El Mestikawy S, Rhee J, Kirchhoff F, Brose N (2011). In vivo imaging of intersynaptic vesicle exchange using VGLUT1 Venus knock-in mice. J Neurosci, 31(43): 15544–15559

PMID

39
Howarth M, Liu W, Puthenveetil S, Zheng Y, Marshall L F, Schmidt M M, Wittrup K D, Bawendi M G, Ting A Y (2008). Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods, 5(5): 397–399

PMID

40
Hua Y, Sinha R, Martineau M, Kahms M, Klingauf J (2010). A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat Neurosci, 13(12): 1451–1453

PMID

41
Ifrim M F, Williams K R, Bassell G J (2015). Single-molecule imaging of PSD-95 mRNA translation in dendrites and its dysregulation in a mouse model of fragile X syndrome. J Neurosci, 35(18): 7116–7130

PMID

42
Jahn R, Fasshauer D (2012). Molecular machines governing exocytosis of synaptic vesicles. Nature, 490(7419): 201–207

PMID

43
Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008).Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem, 77: 51–76

PMID

44
Kamin D, Lauterbach M A, Westphal V, Keller J, Schönle A, Hell S W, Rizzoli S O (2010). High- and low-mobility stages in the synaptic vesicle cycle. Biophys J, 99(2): 675–684

PMID

45
Kavalali E T (2015). The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci, 16(1): 5–16

PMID

46
Kavalali E T, Jorgensen E M (2014). Visualizing presynaptic function. Nat Neurosci, 17(1): 10–16

PMID

47
Kharazia V N, Weinberg R J (1997). Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex. NeurosciLett, 238(1-2): 41–44

PMID

48
Kural C, Kim H, Syed S, Goshima G, Gelfand V I, Selvin P R (2005). Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science, 308(5727): 1469–1472

PMID

49
Kusumi A, Tsunoyama T A, Hirosawa K M, Kasai R S, Fujiwara T K (2014).Tracking single molecules at work in living cells. Nat ChemBiol, 10(7): 524–532

PMID

50
Kwakowsky A, Potapov D, Abrahám I M (2013).Tracking of single receptor molecule mobility in neuronal membranes: a quick theoretical and practical guide. J Neuroendocrinol, 25(11): 1231–1237

PMID

51
Lavis L D, Raines R T (2014). Bright building blocks for chemical biology. ACS ChemBiol, 9(4): 855–866

PMID

52
Lee S, Jung K J, Jung H S, Chang S (2012). Dynamics of multiple trafficking behaviors of individual synaptic vesicles revealed by quantum-dot based presynaptic probe. PLoS One, 7(5): e38045

PMID

53
Leitz J, Kavalali E T (2011). Ca²⁺ influx slows single synaptic vesicle endocytosis. J Neurosci, 31(45): 16318–16326

PMID

54
Leitz J, Kavalali E T (2014). Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. Elife, 3: e03658

PMID

55
Levi V, Gratton E (2007). Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys, 48(1): 1–15

PMID

56
Liu G (2003). Presynaptic control of quantal size: kinetic mechanisms and implications for synaptic transmission and plasticity. Curr Opin Neurobiol, 13(3): 324–331

PMID

57
Liu Z, Lavis L D, Betzig E (2015). Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell, 58(4): 644–659

PMID

58
Loy K, Welzel O, Kornhuber J, Groemer T W (2014). Common strength and localization of spontaneous and evoked synaptic vesicle release sites. Mol Brain, 7: 23

PMID

59
Mahler B, Spinicelli P, Buil S, Quelin X, Hermier J P, Dubertret B (2008). Towards non-blinking colloidal quantum dots. Nat Mater, 7(8): 659–664

PMID

60
Makino H, Malinow R (2009). AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron, 64(3): 381–390

PMID

61
Manzo C, Garcia-Parajo M F (2015). A review of progress in single particle tracking: from methods to biophysical insights. Rep Prog Phys, 78(12): 124601

PMID

62
Maschi D, Klyachko V A (2015).A nanoscale resolution view on synaptic vesicle dynamics. Synapse, 69(5): 256–267

PMID

63
Mattoussi H, Palui G, Na H B (2012). Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev, 64(2): 138–166

PMID

64
Maysinger D, Ji J, Hutter E, Cooper E (2015). Nanoparticle-based and bioengineered probes and sensors to detect physiological and pathological biomarkers in neural cells. Front Neurosci, 9: 480

PMID

65
Medintz I L, Uyeda H T, Goldman E R, Mattoussi H (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 4(6): 435–446

PMID

66
Michalet X, Colyer R A, Scalia G, Ingargiola A, Lin R, Millaud J E, Weiss S, Siegmund O H, Tremsin A S, Vallerga J V, Cheng A, Levi M, Aharoni D, Arisaka K, Villa F, Guerrieri F, Panzeri F, Rech I, Gulinatti A, Zappa F, Ghioni M, Cova S (2013). Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos Trans R SocLond B Biol Sci, 368(1611): 20120035

PMID

67
Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709): 538–544

PMID

68
Midorikawa M, Sakaba T (2015). Imaging exocytosis of single synaptic vesicles at a fast CNS presynaptic terminal. Neuron, 88(3): 492–498

PMID

69
Miesenböck G, De Angelis D A, Rothman J E (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature, 394(6689): 192–195

PMID

70
Mochida S (2011). Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity. Neurosci Res, 70(1): 16–23

PMID

71
Monico C, Capitanio M, Belcastro G, Vanzi F, Pavone F S (2013). Optical methods to study protein-DNA interactions in vitro and in living cells at the single-molecule level. Int J Mol Sci, 14(2): 3961–3992

PMID

73
Müller T, Schumann C, Kraegeloh A (2012). STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem, 13(8): 1986–2000

PMID

74
Murthy V N, De Camilli P (2003). Cell biology of the presynaptic terminal. Annu Rev Neurosci, 26: 701–728

PMID

75
Nan X, Sims P A, Chen P, Xie X S (2005). Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J Phys Chem B, 109(51): 24220–24224

PMID

76
Neupane B, Ligler F S, Wang G (2014). Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. J Biomed Opt, 19(8): 080901

PMID

77
Opazo P, Sainlos M, Choquet D (2012). Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol, 22(3): 453–460

PMID

78
Park H, Hanson G T, Duff S R, Selvin P R (2004). Nanometre localization of single ReAsH molecules. J Microsc, 216(Pt 3): 199–205

PMID

79
Park H, Li Y, Tsien R W (2012). Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science, 335(6074): 1362–1366

PMID

82
Park H, Toprak E, Selvin P R (2007). Single-molecule fluorescence to study molecular motors. Q Rev Biophys, 40(1): 87–111

PMID

83
Pechstein A, Shupliakov O (2010). Taking a back seat: synaptic vesicle clustering in presynaptic terminals. Front Synaptic Neurosci, 2: 143

PMID

84
Peng A, Rotman Z, Deng P Y, Klyachko V A (2012).Differential motion dynamics of synaptic vesicles undergoing spontaneous and activity-evoked endocytosis. Neuron, 73(6): 1108–1115

PMID

85
Ramirez D M, Kavalali E T (2011).Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr Opin Neurobiol, 21(2): 275–282

PMID

86
Ratnayaka A, Marra V, Branco T, Staras K (2011). Extrasynaptic vesicle recycling in mature hippocampal neurons. Nat Commun, 2: 531

PMID

87
Regehr W G (2012). Short-term presynaptic plasticity . Cold Spring Harb Perspect Biol, 4(7): a005702

PMID

88
Rust M J, Bates M, Zhuang X (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3(10): 793–795

PMID

89
Sakaba T (2006). Roles of the fast-releasing and the slowly releasing vesicles in synaptic transmission at the calyx of Held. J Neurosci, 26(22): 5863–5871

PMID

90
Sara Y, Bal M, Adachi M, Monteggia L M, Kavalali E T (2011). Use-dependent AMPA receptor block reveals segregation of spontaneous and evoked glutamatergic neurotransmission. J Neurosci, 31(14): 5378–5382

PMID

91
Smith A M, Nie S (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res, 43(2): 190–200

PMID

92
Staras K, Branco T, Burden J J, Pozo K, Darcy K, Marra V, Ratnayaka A, Goda Y (2010). A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron, 66(1): 37–44

PMID

93
Steyer J A, Almers W (2001). A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol, 2(4): 268–275

PMID

94
Südhof T C (2004). The synaptic vesicle cycle. Annu Rev Neurosci, 27: 509–547

PMID

95
Südhof T C(2008). Neurotransmitter release. Handb Exp Pharmacol, (184): 1–21

96
Takamori S, Holt M, Stenius K, Lemke E A, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Møller S A, Rammner B, Gräter F, Hub J S, De Groot B L, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006). Molecular anatomy of a trafficking organelle. Cell, 127(4): 831–846

PMID

97
Tardin C, Cognet L, Bats C, Lounis B, Choquet D (2003). Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J, 22(18): 4656–4665

PMID

98
Tatavarty V, Ifrim M F, Levin M, Korza G, Barbarese E, Yu J, Carson J H (2012). Single-molecule imaging of translational output from individual RNA granules in neurons. MolBiol Cell, 23(5): 918–929

PMID

99
Thompson R E, Larson D R, Webb W W (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J, 82(5): 2775–2783

PMID

100
Triller A, Choquet D (2008).New concepts in synaptic biology derived from single-molecule imaging. Neuron, 59(3): 359–374

PMID

101
Warshaw D M, Kennedy G G, Work S S, Krementsova E B, Beck S, Trybus K M (2005). Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J, 88(5): L30–L32

PMID

102
Westphal V, Rizzoli S O, Lauterbach M A, Kamin D, Jahn R, Hell S W (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 320(5873): 246–249

PMID

103
Wilhelm B G, Groemer T W, Rizzoli S O (2010). The same synaptic vesicles drive active and spontaneous release. Nat Neurosci, 13(12): 1454–1456

PMID

104
Willig K I, Rizzoli S O, Westphal V, Jahn R, Hell S W (2006). STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440(7086): 935–939

PMID

105
Wu Y, Yeh F L, Mao F, Chapman E R (2009). Biophysical characterization of styryl dye-membrane interactions. Biophys J, 97(1): 101–109

PMID

106
Xia T, Li N, Fang X (2013). Single-molecule fluorescence imaging in living cells. Annu Rev PhysChem, 64: 459–480

PMID

107
Xie X S, Trautman J K (1998). Optical studies of single molecules at room temperature. Annu Rev PhysChem, 49: 441–480

PMID

108
Yang Y, Calakos N (2013). Presynaptic long-term plasticity. Front Synaptic Neurosci, 5: 8

PMID

109
Yildiz A, Forkey J N, McKinney S A, Ha T, Goldman Y E, Selvin P R (2003).Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300(5628): 2061–2065

PMID

110
Yildiz A, Selvin P R (2005). Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res, 38(7): 574–582

PMID

111
Zenisek D, Steyer J A, Almers W (2000). Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature, 406(6798): 849–854

PMID

112
Zhang Q, Cao Y Q, Tsien R W (2007). Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc Natl Acad Sci U S A, 104(45): 17843–17848

PMID

113
Zhang Q, Li Y, Tsien R W (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science, 323(5920): 1448–1453

PMID

114
Zhang R, Rothenberg E, Fruhwirth G, Simonson P D, Ye F, Golding I, Ng T, Lopes W, Selvin P R (2011). Two-photon 3D FIONA of individual quantum dots in an aqueous environment. Nano Lett, 11(10):4074–4078

115
Zhou X, Wang L (2010). Uses of single-particle tracking in living cells. Drug Discov Ther, 4(2): 62–69

PMID

116
Zhu Y, Xu J, Heinemann S F (2009). Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron, 61(3): 397–411

PMID

Outlines

/