REVIEW

Heme regulates protein homeostasis at transcription, protein translation, and degradation levels

  • Fang YANG ,
  • En-Duo WANG
Expand
  • State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

Received date: 15 Jul 2010

Accepted date: 06 Sep 2010

Published date: 01 Dec 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Heme, as a prosthetic group of proteins, is an iron-protoporphyrin involved in a wide range of cellular functions. Cellular heme levels vary due to the accurate balance of its synthesis and degradation. The “heme sensor protein” is currently a focus of investigation because heme has been found as a cellular signaling messenger involved in various biologic processes, including gene expression, protein localization, protein stability and microRNA processing. Several eukaryotic transcriptional factors can be regulated by heme, including heme activator protein (Hap1), Bach1, REV-erbα, and neuronal PAS domain protein 2 (NPAS2). Especially, the two circadian transcriptional factors serving as the heme sensor, REV-erbα and NPAS2, coordinate the circadian clock with metabolic pathways. It is well established that heme regulates the activity of heme-regulated eukaryotic initiation factor 2α (eIF2α) kinase (HRI), which serves as a feedback inhibitor of protein translation in both erythroid and non- erythroid cells. Additionally, heme is involved in protein degradation by inducing the degradation of several proteins such as the iron response regulator (Irr), iron regulatory protein 2 (IRP2), Bach1, and circadian factor period 2 (Per2). The N-end rule ubiquitin-dependent protein degradation pathway has also been identified as a sensor of heme, which blocks the function of arginyl-tRNA protein transferase (ATE1) and E3 ubiquitin ligase. In this review, we summarize the regulatory roles of heme at the levels of transcription, protein translation, and protein degradation, highlighting the role of heme in maintaining cellular homeostasis.

Cite this article

Fang YANG , En-Duo WANG . Heme regulates protein homeostasis at transcription, protein translation, and degradation levels[J]. Frontiers in Biology, 2010 , 5(6) : 516 -523 . DOI: 10.1007/s11515-010-7700-5

Acknowledgements

This work was funded by the National Key Basic Research Foundation of China (No. 2006CB910301), the National Natural Science Foundation of China (Grant No. 30930022), the Postdoctoral Science Foundation of China, the Postdoctoral Foundation of Shanghai, the Postdoctoral Foundation of Shanghai Institutes for Biological Sciences (SIBS), K.C. Wong Postdoctoral Fellowship of the Chinese Academy of Sciences, and Sanofi-Aventis-SIBS Postdoctoral Fellowship.
1
Acharya P, Chen J J, Correia M A (2010). Hepatic heme-regulated inhibitor (HRI) eukaryotic initiation factor 2alpha kinase: a protagonist of heme-mediated translational control of CYP2B enzymes and a modulator of basal endoplasmic reticulum stress tone.Mol Pharmacol, 77(4): 575–592

DOI PMID

2
Becerra M, Lombardía-Ferreira L J, Hauser N C, Hoheisel J D, Tizon B, Cerdán M E (2002). The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions.Mol Microbiol, 43(3): 545–555

DOI PMID

3
Brower C S, Varshavsky A, Hansen I A (2009). Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations.PLoS ONE, 4(11): e7757

DOI PMID

4
Chen J J (2000). In: Soneberg N, Hershey J W B, Mathews M B, eds. Translational Control of Gene Expression. NY: Cold Spring Harbor Laboratory Press, 529–546

5
Chen J J (2007). Regulation of protein synthesis by the heme-regulated eIF2α kinase: relevance to anemias. Blood, 109(7): 2693–2699

6
Chen J J, London I M (1995). Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase.Trends Biochem Sci, 20(3): 105–108

DOI PMID

7
Dever T E (2002). Gene-specific regulation by general translation factors.Cell, 108(4): 545–556

DOI PMID

8
Dioum E M, Rutter J, Tuckerman J R, Gonzalez G, Gilles-Gonzalez M A, McKnight S L (2002). NPAS2: a gas-responsive transcription factor.Science, 298(5602): 2385–2387

DOI PMID

9
Dohi Y, Ikura T, Hoshikawa Y, Katoh Y, Ota K, Nakanome A, Muto A, Omura S, Ohta T, Ito A, Yoshida M, Noda T, Igarashi K (2008). Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin.Nat Struct Mol Biol, 15(12): 1246–1254

DOI PMID

10
Dunbar A Y, Kamada Y, Jenkins G J, Lowe E R, Billecke S S, Osawa Y (2004). Ubiquitination and degradation of neuronal nitric-oxide synthase in vitro: dimer stabilization protects the enzyme from proteolysis.Mol Pharmacol, 66(4): 964–969

DOI PMID

11
Etlinger J D, Goldberg A L (1980). Control of protein degradation in reticulocytes and reticulocyte extracts by hemin.J Biol Chem, 255(10): 4563–4568

PMID

12
Faller M, Matsunaga M, Yin S, Loo J A, Guo F (2007). Heme is involved in microRNA processing.Nat Struct Mol Biol, 14(1): 23–29

DOI PMID

13
Furuyama K, Kaneko K, Vargas P D (2007). Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis.Tohoku J Exp Med, 213(1): 1–16

DOI PMID

14
Gattoni M, Boffi A, Sarti P, Chiancone E (1996). Stability of the heme-globin linkage in alphabeta dimers and isolated chains of human hemoglobin. A study of the heme transfer reaction from the immobilized proteins to albumin.J Biol Chem, 271(17): 10130–10136

PMID

15
Guillaumond F, Dardente H, Giguère V, Cermakian N (2005). Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors.J Biol Rhythms, 20(5): 391–403

DOI PMID

16
Haas A L, Rose I A (1981). Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: role of hemin in regulating ubiquitin conjugate degradation.Proc Natl Acad Sci USA, 78(11): 6845–6848

DOI PMID

17
Hamza I, Chauhan S, Hassett R, O’Brian M R (1998). The bacterial irr protein is required for coordination of heme biosynthesis with iron availability.J Biol Chem, 273(34): 21669–21674

DOI PMID

18
Hentze M W, Muckenthaler M U, Andrews N C (2004). Balancing acts: molecular control of mammalian iron metabolism.Cell, 117(3): 285–297

DOI PMID

19
Hickman M J, Winston F (2007). Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor.Mol Cell Biol, 27(21): 7414–7424

DOI PMID

20
Hoffman A E, Zheng T, Ba Y, Zhu Y (2008). The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response.Mol Cancer Res, 6(9): 1461–1468

DOI PMID

21
Hou S, Reynolds M F, Horrigan F T, Heinemann S H, Hoshi T (2006). Reversible binding of heme to proteins in cellular signal transduction.Acc Chem Res, 39(12): 918–924

DOI PMID

22
Hu R G, Wang H, Xia Z, Varshavsky A (2008). The N-end rule pathway is a sensor of heme.Proc Natl Acad Sci USA, 105(1): 76–81

DOI PMID

23
Igarashi J, Murase M, Iizuka A, Pichierri F, Martinkova M, Shimizu T (2008). Elucidation of the heme binding site of heme-regulated eukaryotic initiation factor 2alpha kinase and the role of the regulatory motif in heme sensing by spectroscopic and catalytic studies of mutant proteins.J Biol Chem, 283(27): 18782–18791

DOI PMID

24
Igarashi J, Sato A, Kitagawa T, Yoshimura T, Yamauchi S, Sagami I, Shimizu T (2004). Activation of heme-regulated eukaryotic initiation factor 2alpha kinase by nitric oxide is induced by the formation of a five-coordinate NO-heme complex: optical absorption, electron spin resonance, and resonance raman spectral studies.J Biol Chem, 279(16): 15752–15762

DOI PMID

25
Inuzuka T, Yun B G, Ishikawa H, Takahashi S, Hori H, Matts R L, Ishimori K, Morishima I (2004). Identification of crucial histidines for heme binding in the N-terminal domain of the heme-regulated eIF2alpha kinase.J Biol Chem, 279(8): 6778–6782

DOI PMID

26
Ishikawa H, Kato M, Hori H, Ishimori K, Kirisako T, Tokunaga F, Iwai K (2005). Involvement of heme regulatory motif in heme-mediated ubiquitination and degradation of IRP2.Mol Cell, 19(2): 171–181

DOI PMID

27
Kaasik K, Lee C C (2004). Reciprocal regulation of haem biosynthesis and the circadian clock in mammals.Nature, 430(6998): 467–471

DOI PMID

28
Kim Y M, Son K, Hong S J, Green A, Chen J J, Tzeng E, Hierholzer C, Billiar T R (1998). Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha.Mol Med, 4(3): 179–190

PMID

29
Kurosaka S, Leu N A, Zhang F, Bunte R, Saha S, Wang J, Guo C, He W, Kashina A, Bronner-Fraser M (2010). Arginylation-dependent neural crest cell migration is essential for mouse development.PLoS Genet, 6(3): e1000878

DOI PMID

30
Kwon Y T, Kashina A S, Davydov I V, Hu R G, An J Y, Seo J W, Du F, Varshavsky A (2002). An essential role of N-terminal arginylation in cardiovascular development.Science, 297(5578): 96–99

DOI PMID

31
Lamas S, Lowenstein C J, Michel T (2007). Nitric oxide signaling comes of age: 20 years and thriving.Cardiovasc Res, 75(2): 207–209

DOI PMID

32
Lan C, Lee H C, Tang S, Zhang L (2004). A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex.J Biol Chem, 279(26): 27607–27612

DOI PMID

33
Lee K S, Raymond L D, Schoen B, Raymond G J, Kett L, Moore R A, Johnson L M, Taubner L, Speare J O, Onwubiko H A, Baron G S, Caughey W S, Caughey B (2007). Hemin interactions and alterations of the subcellular localization of prion protein.J Biol Chem, 282(50): 36525–36533

DOI PMID

34
Leu N A, Kurosaka S, Kashina A, Bergmann A (2009). Conditional Tek promoter-driven deletion of arginyltransferase in the germ line causes defects in gametogenesis and early embryonic lethality in mice.PLoS ONE, 4(11): e7734PMID:19890395

DOI

35
Levicán G, Katz A, de Armas M, Núñez H, Orellana O (2007). Regulation of a glutamyl-tRNA synthetase by the heme status.Proc Natl Acad Sci USA, 104(9): 3135–3140PMID:17360620

DOI

36
Liao M, Pabarcus M K, Wang Y, Hefner C, Maltby D A, Medzihradszky K F, Salas-Castillo S P, Yan J, Maher J J, Correia M A (2007). Impaired dexamethasone-mediated induction of tryptophan 2,3-dioxygenase in heme-deficient rat hepatocytes: translational control by a hepatic eIF2alpha kinase, the heme-regulated inhibitor.J Pharmacol Exp Ther, 323(3): 979–989

DOI PMID

37
Lim E J, Joung Y H, Jung S M, Park S H, Park J H, Kim S Y, Hwang T S, Hong D Y, Chung S C, Ye S K, Moon E S, Park E U, Park T, Chung I M, Yang Y M (2010). Hemin inhibits cyclin D1 and IGF-1 expression via STAT5b under hypoxia in ERalpha-negative MDA-MB 231 breast cancer cells.Int J Oncol, 36(5): 1243–1251

PMID

38
Mense S M, Zhang L (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases.Cell Res, 16(8): 681–692

DOI PMID

39
Meyron-Holtz E G, Ghosh M C, Rouault T A (2004). Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo.Science, 306(5704): 2087–2090

DOI PMID

40
Monson E K, Weinstein M, Ditta G S, Helinski D R (1992). The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain.Proc Natl Acad Sci USA, 89(10): 4280–4284

DOI PMID

41
Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H, Igarashi K (2001). Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1.EMBO J, 20(11): 2835–2843

DOI PMID

42
Oglesby-Sherrouse A G, Vasil M L, Rénia L (2010). Characterization of a heme-regulated non-coding RNA encoded by the prrF locus of Pseudomonas aeruginosa.PLoS ONE, 5(4): e9930

DOI PMID

43
Qi Z, Hamza I, O’Brian M R (1999). Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein.Proc Natl Acad Sci USA, 96(23): 13056–13061

DOI PMID

44
Rafie-Kolpin M, Chefalo P J, Hussain Z, Hahn J, Uma S, Matts R L, Chen J J (2000). Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion.J Biol Chem, 275(7): 5171–5178

DOI PMID

45
Raghuram S, Stayrook K R, Huang P, Rogers P M, Nosie A K, McClure D B, Burris L L, Khorasanizadeh S, Burris T P, Rastinejad F (2007). Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta.Nat Struct Mol Biol, 14(12): 1207–1213

DOI PMID

46
Reichard J F, Sartor M A, Puga A (2008). BACH1 is a specific repressor of HMOX1 that is inactivated by arsenite.J Biol Chem, 283(33): 22363–22370

DOI PMID

47
Ripperger J A (2006). Mapping of binding regions for the circadian regulators BMAL1 and CLOCK within the mouse Rev-erbalpha gene.Chronobiol Int, 23(1-2): 135–142

DOI PMID

48
Salahudeen A A, Thompson J W, Ruiz J C, Ma H W, Kinch L N, Li Q, Grishin N V, Bruick R K (2009). An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.Science, 326(5953): 722–726

DOI PMID

49
Severance S, Hamza I (2009). Trafficking of heme and porphyrins in metazoa.Chem Rev, 109(10): 4596–4616

DOI PMID

50
Severance S, Rajagopal A, Rao A U, Cerqueira G C, Mitreva M, El-Sayed N M, Krause M, Hamza I, Chisholm A D (2010). Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans.PLoS Genet, 6(7): e1001044

DOI PMID

51
Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H, Tashiro S, Takahashi S, Shibahara S, Alam J, Taketo M M, Yamamoto M, Igarashi K (2002). Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene.EMBO J, 21(19): 5216–5224

DOI PMID

52
Suzuki H, Tashiro S, Hira S, Sun J, Yamazaki C, Zenke Y, Ikeda-Saito M, Yoshida M, Igarashi K (2004). Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1.EMBO J, 23(13): 2544–2553

DOI PMID

53
Tsai A (1994). How does NO activate hemeproteins?FEBS Lett, 341(2-3): 141–145

DOI PMID

54
Uma S, Yun B G, Matts R L (2001). The heme-regulated eukaryotic initiation factor 2alpha kinase. A potential regulatory target for control of protein synthesis by diffusible gases.J Biol Chem, 276(18): 14875–14883

DOI PMID

55
Varshavsky A (1996). The N-end rule: functions, mysteries, uses.Proc Natl Acad Sci USA, 93(22): 12142–12149

DOI PMID

56
Vierstra R D, Sullivan M L (1988). Hemin inhibits ubiquitin-dependent proteolysis in both a higher plant and yeast.Biochemistry, 27(9): 3290–3295

DOI PMID

57
Wakasugi K (2007). Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity.Biochemistry, 46(40): 11291–11298

DOI PMID

58
Wehner K A, Schütz S, Sarnow P (2010). OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress.Mol Cell Biol, 30(8): 2006–2016

DOI PMID

59
Wu N, Yin L, Hanniman E A, Joshi S, Lazar M A (2009). Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbalpha.Genes Dev, 23(18): 2201–2209

DOI PMID

60a
Yang F, Xia X, Lei H Y, Wang E D (2010). Hemin binds to human cytoplasmic arginyl-tRNA synthetase and inhibits its catalytic activity.J Biol Chem, doi: 10.1074/jbc.M110.159913 (in press)

DOI

60
Yang J, Ishimori K, O’Brian M R (2005). Two heme binding sites are involved in the regulated degradation of the bacterial iron response regulator (Irr) protein.J Biol Chem, 280(9): 7671–7676

DOI PMID

61
Yang J, Kim K D, Lucas A, Drahos K E, Santos C S, Mury S P, Capelluto D G, Finkielstein C V (2008). A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2.Mol Cell Biol, 28(15): 4697–4711

DOI PMID

62
Yang J, Panek H R, O’Brian M R (2006). Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum.Mol Microbiol, 60(1): 209–218

DOI PMID

63
Yin L, Wu N, Curtin J C, Qatanani M, Szwergold N R, Reid R A, Waitt G M, Parks D J, Pearce K H, Wisely G B, Lazar M A (2007). Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways.Science, 318(5857): 1786–1789

DOI PMID

64
Yin L, Wu N, Lazar M A (2010). Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal, 8: e001

65
Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M, Asahara T, Tokunaga F, Iwai K, Igarashi K (2007). Heme induces ubiquitination and degradation of the transcription factor Bach1.Mol Cell Biol, 27(19): 6962–6971

DOI PMID

66
Zhang L, Guarente L (1995). Heme binds to a short sequence that serves a regulatory function in diverse proteins.EMBO J, 14(2): 313–320

PMID

67
Zhang L, Hach A (1999). Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator.Cell Mol Life Sci, 56(5-6): 415–426

DOI PMID

Outlines

/