Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity
Received date: 11 Jun 2015
Accepted date: 06 Jul 2015
Published date: 14 Aug 2015
Copyright
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Key words: nutrient sensing; NAD+ homeostasis; yeast longevity
Felicia Tsang , Su-Ju Lin . Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity[J]. Frontiers in Biology, 2015 , 10(4) : 333 -357 . DOI: 10.1007/s11515-015-1367-x
1 |
Abdel-Sater F, Jean C, Merhi A, Vissers S, André B (2011). Amino acid signaling in yeast: activation of Ssy5 protease is associated with its phosphorylation-induced ubiquitylation. J Biol Chem, 286(14): 12006–12015
|
2 |
AbdelRaheim S R, Cartwright J L, Gasmi L, McLennan A G (2001). The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 nudix hydrolase gene is located in peroxisomes. Arch Biochem Biophys, 388(1): 18–24
|
3 |
Andersen M P, Nelson Z W, Hetrick E D, Gottschling D E (2008). A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae. Genetics, 179(3): 1179–1195
|
4 |
Anderson R M, Bitterman K J, Wood J G, Medvedik O, Cohen H, Lin S S, Manchester J K, Gordon J I, Sinclair D A (2002). Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem, 277(21): 18881–18890
|
5 |
Anderson R M, Bitterman K J, Wood J G, Medvedik O, Sinclair D A (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature, 423(6936): 181–185
|
6 |
Andréasson C, Heessen S, Ljungdahl P O (2006). Regulation of transcription factor latency by receptor-activated proteolysis. Genes Dev, 20(12): 1563–1568
|
7 |
Ashrafi K, Lin S S, Manchester J K, Gordon J I (2000). Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev, 14(15): 1872–1885
|
8 |
Auesukaree C, Homma T, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2004). Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J Biol Chem, 279(17): 17289–17294
|
9 |
Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S (2005). Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae. J Biol Chem, 280(26): 25127–25133
|
10 |
Bakker B M, Overkamp K M, Kötter P, Luttik M A, Pronk J T, van Dijken J P, Pronk J T, and the van Maris AJ, and the van Dijken J P (2001). Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev, 25(1): 15–37
|
11 |
Baldwin S A, Yao S Y, Hyde R J, Ng A M, Foppolo S, Barnes K, Ritzel M W, Cass C E, Young J D (2005). Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem, 280(16): 15880–15887
|
12 |
Barros M H, Bandy B, Tahara E B, Kowaltowski A J (2004). Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem, 279(48): 49883–49888
|
13 |
Beck T, Hall M N (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 402(6762): 689–692
|
14 |
Bedalov A, Hirao M, Posakony J, Nelson M, Simon J A (2003). NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol, 23(19): 7044–7054
|
15 |
Belenky P, Racette F G, Bogan K L, McClure J M, Smith J S, Brenner C (2007). Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell, 129(3): 473–484
|
16 |
Belenky P A, Moga T G, Brenner C (2008). Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. J Biol Chem, 283(13): 8075–8079
|
17 |
Bender D A (1983). Biochemistry of tryptophan in health and disease. Mol Aspects Med, 6(2): 101–197
|
18 |
Bieganowski P, Brenner C (2004). Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell, 117(4): 495–502
|
19 |
Bieganowski P, Pace H C, Brenner C (2003). Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem, 278(35): 33049–33055
|
20 |
Biliński T, Bartosz G (2006). Hypothesis: cell volume limits cell divisions. Acta Biochim Pol, 53(4): 833–835
|
21 |
Biliński T, Zadrąg-Tęcza R, Bartosz G (2012). Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res, 12(1): 97–101
|
22 |
Binda M, Péli-Gulli M P, Bonfils G, Panchaud N, Urban J, Sturgill T W, Loewith R, De Virgilio C (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell, 35(5): 563–573
|
23 |
Bitterman K J, Anderson R M, Cohen H Y, Latorre-Esteves M, Sinclair D A (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem, 277(47): 45099–45107
|
24 |
Blinder D, Coschigano P W, Magasanik B (1996). Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J Bacteriol, 178(15): 4734–4736
|
25 |
Bogan K L, Brenner C (2008). Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr, 28(1): 115–130
|
26 |
Bogan K L, Evans C, Belenky P, Song P, Burant C F, Kennedy R, Brenner C (2009). Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5′-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside. J Biol Chem, 284(50): 34861–34869
|
27 |
Bonawitz N D, Chatenay-Lapointe M, Pan Y, Shadel G S (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab, 5(4): 265–277
|
28 |
Boswell-Casteel R C, Johnson J M, Duggan K D, Roe-Žurž Z, Schmitz H, Burleson C, Hays F A (2014). FUN26 (function unknown now 26) protein from Saccharomyces cerevisiae is a broad selectivity, high affinity, nucleoside and nucleobase transporter. J Biol Chem, 289(35): 24440–24451
|
29 |
Brachmann C B, Sherman J M, Devine S E, Cameron E E, Pillus L, Boeke J D (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev, 9(23): 2888–2902
|
30 |
Broach J R (2012). Nutritional control of growth and development in yeast. Genetics, 192(1): 73–105
|
31 |
Bun-Ya M, Nishimura M, Harashima S, Oshima Y (1991). The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol, 11(6): 3229–3238
|
32 |
Burtner C R, Murakami C J, Kennedy B K, Kaeberlein M (2009). A molecular mechanism of chronological aging in yeast. Cell Cycle, 8(8): 1256–1270
|
33 |
Carroll A S, Bishop A C, DeRisi J L, Shokat K M, O’Shea E K (2001). Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci USA, 98(22): 12578–12583
|
34 |
Casamayor A, Torrance P D, Kobayashi T, Thorner J, Alessi D R (1999). Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol, 9(4): 186–197
|
35 |
Celenza J L, Carlson M (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science, 233(4769): 1175–1180
|
36 |
Celic I, Masumoto H, Griffith W P, Meluh P, Cotter R J, Boeke J D, Verreault A (2006). The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol, 16(13): 1280–1289
|
37 |
Chandrashekarappa D G, McCartney R R, Schmidt M C (2013). Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J Biol Chem, 288(1): 89–98
|
38 |
Cheng W, Roth J (1995). Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium. J Bacteriol, 177(23): 6711–6717
|
39 |
Cherkasova V A, Hinnebusch A G (2003). Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev, 17(7): 859–872
|
40 |
Chodosh L A, Olesen J, Hahn S, Baldwin A S, Guarente L, Sharp P A (1988). A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell, 53(1): 25–35
|
41 |
Choi K M, Kwon Y Y, Lee C K (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett, 589(3): 349–357
|
42 |
Clapper D L, Walseth T F, Dargie P J, Lee H C (1987). Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem, 262(20): 9561–9568
|
43 |
Conrad M, Schothorst J, Kankipati H N, Van Zeebroeck G, Rubio-Texeira M, Thevelein J M (2014). Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev, 38(2): 254–299
|
44 |
De Wever V, Reiter W, Ballarini A, Ammerer G, Brocard C (2005). A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J, 24(23): 4115–4123
|
45 |
Delaney J R, Ahmed U, Chou A, Sim S, Carr D, Murakami C J, Schleit J, Sutphin G L, An E H, Castanza A, Fletcher M, Higgins S, Jelic M, Klum S, Muller B, Peng Z J, Rai D, Ros V, Singh M, Wende H V, Kennedy B K, Kaeberlein M (2013). Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell, 12(1): 156–166
|
46 |
DeRisi J L, Iyer V R, Brown P O (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278(5338): 680–686
|
47 |
Dever T E, Hinnebusch A G (2005). GCN2 whets the appetite for amino acids. Mol Cell, 18(2): 141–142
|
48 |
Dilova I, Aronova S, Chen J C, Powers T (2004). Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes. J Biol Chem, 279(45): 46527–46535
|
49 |
Dilova I, Easlon E, Lin S J (2007). Calorie restriction and the nutrient sensing signaling pathways. Cell Mol Life Sci, 64(6): 752–767
|
50 |
Dohlman H G, Thorner J W (2001). Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem, 70(1): 703–754
|
51 |
Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch A G (2000). Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell, 6(2): 269–279
|
52 |
Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell, 19(1): 15–26
|
53 |
Easlon E, Tsang F, Dilova I, Wang C, Lu S P, Skinner C, Lin S J (2007). The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension. J Biol Chem, 282(9): 6161–6171
|
54 |
Easlon E, Tsang F, Skinner C, Wang C, Lin S J (2008). The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev, 22(7): 931–944
|
55 |
Efeyan A, Zoncu R, Sabatini D M (2012). Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med, 18(9): 524–533
|
56 |
Emanuelli M, Amici A, Carnevali F, Pierella F, Raffaelli N, Magni G (2003). Identification and characterization of a second NMN adenylyltransferase gene in Saccharomyces cerevisiae. Protein Expr Purif, 27(2): 357–364
|
57 |
Emanuelli M, Carnevali F, Lorenzi M, Raffaelli N, Amici A, Ruggieri S, Magni G (1999). Identification and characterization of YLR328W, the Saccharomyces cerevisiae structural gene encoding NMN adenylyltransferase. Expression and characterization of the recombinant enzyme. FEBS Lett, 455(1–2): 13–17
|
58 |
Endo Y, Obata T, Murata D, Ito M, Sakamoto K, Fukushima M, Yamasaki Y, Yamada Y, Natsume N, Sasaki T (2007). Cellular localization and functional characterization of the equilibrative nucleoside transporters of antitumor nucleosides. Cancer Sci, 98(10): 1633–1637
|
59 |
Erjavec N, Bayot A, Gareil M, Camougrand N, Nystrom T, Friguet B, Bulteau A L (2013). Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic Biol Med, 56: 9–16
|
60 |
Erjavec N, Cvijovic M, Klipp E, Nyström T (2008). Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA, 105(48): 18764–18769
|
61 |
Erjavec N, Larsson L, Grantham J, Nyström T (2007). Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev, 21(19): 2410–2421
|
62 |
Erjavec N, Nyström T (2007). Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 104(26): 10877–10881
|
63 |
Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T (1999). Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science, 283(5404): 981–985
|
64 |
Evans C, Bogan K L, Song P, Burant C F, Kennedy R T, Brenner C (2010). NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity. BMC Chem Biol, 10(1): 2
|
65 |
Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo V D (2005). Sir2 blocks extreme life-span extension. Cell, 123(4): 655–667
|
66 |
Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, Longo V D (2010). Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet, 6(7): e1001024
|
67 |
Fabrizio P, Longo V D (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell, 2(2): 73–81
|
68 |
Fabrizio P, Longo V D (2007). The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol, 371: 89–95
|
69 |
Fabrizio P, Pozza F, Pletcher S D, Gendron C M, Longo V D (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science, 292(5515): 288–290
|
70 |
Flick K M, Spielewoy N, Kalashnikova T I, Guaderrama M, Zhu Q, Chang H C, Wittenberg C (2003). Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell, 14(8): 3230–3241
|
71 |
Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P (2014). Quality control of inner nuclear membrane proteins by the Asi complex. Science, 346(6210): 751–755
|
72 |
Forsburg S L, Guarente L (1989). Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev, 3(8): 1166–1178
|
73 |
Frye R A (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273(2): 793–798
|
74 |
Gallo C M, Smith D L Jr, Smith J S (2004). Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol, 24(3): 1301–1312
|
75 |
Gancedo J M (1998). Yeast carbon catabolite repression. Microbiol Mol Biol Rev, 62(2): 334–361
|
76 |
Garavaglia S, D’Angelo I, Emanuelli M, Carnevali F, Pierella F, Magni G, Rizzi M (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J Biol Chem, 277(10): 8524–8530
|
77 |
Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B (2008). Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol, 68(6): 1583–1594
|
78 |
Ghislain M, Talla E, François J M (2002). Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast, 19(3): 215–224
|
79 |
Giots F, Donaton M C, Thevelein J M (2003). Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol, 47(4): 1163–1181
|
80 |
Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007). Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 27(8): 3065–3086
|
81 |
Görner W, Durchschlag E, Martinez-Pastor M T, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev, 12(4): 586–597
|
82 |
Görner W, Durchschlag E, Wolf J, Brown E L, Ammerer G, Ruis H, Schüller C (2002). Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J, 21(1–2): 135–144
|
83 |
Graeff R, Liu Q, Kriksunov I A, Hao Q, Lee H C (2006). Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine nicotinic acid adenine dinucleotide phosphate (NAADP) synthesis and hydrolysis activities. J Biol Chem, 281(39): 28951–28957
|
84 |
Grose J H, Bergthorsson U, Roth J R (2005). Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J Bacteriol, 187(8): 2774–2782
|
85 |
Guarente L (2013). Introduction: sirtuins in aging and diseases. Methods Mol Biol, 1077: 3–10
|
86 |
Guse A H, Lee H C (2008). NAADP: a universal Ca2+ trigger. Sci Signal, 1(44): re10
|
87 |
Hachinohe M, Hanaoka F, Masumoto H (2011). Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells, 16(4): 467–477
|
88 |
Hachinohe M, Yamane M, Akazawa D, Ohsawa K, Ohno M, Terashita Y, Masumoto H (2013). A reduction in age-enhanced gluconeogenesis extends lifespan. PLoS ONE, 8(1): e54011
|
89 |
Hahn J S, Thiele D J (2004). Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem, 279(7): 5169–5176
|
90 |
Hahn S, Guarente L (1988). Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science, 240(4850): 317–321
|
91 |
Hahn S, Young E T (2011). Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics, 189(3): 705–736
|
92 |
Haigis M C, Mostoslavsky R, Haigis K M, Fahie K, Christodoulou D C, Murphy A J, Valenzuela D M, Yancopoulos G D, Karow M, Blander G, Wolberger C, Prolla T A, Weindruch R, Alt F W, Guarente L (2006). SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell, 126(5): 941–954
|
93 |
Halme A, Bumgarner S, Styles C, Fink G R (2004). Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell, 116(3): 405–415
|
94 |
Hardie D G (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 8(10): 774–785
|
95 |
Hecht A, Strahl-Bolsinger S, Grunstein M (1996). Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature, 383(6595): 92–96
|
96 |
Hernández H, Aranda C, López G, Riego L, González A (2011). Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae. Microbiology, 157(Pt 3): 879–889
|
97 |
Hinnebusch A G (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol, 59(1): 407–450
|
98 |
Hinnebusch A G, Natarajan K (2002). Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell, 1(1): 22–32
|
99 |
Hong S P, Leiper F C, Woods A, Carling D, Carlson M (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA, 100(15): 8839–8843
|
100 |
Houtkooper R H, Cantó C, Wanders R J, Auwerx J (2010). The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev, 31(2): 194–223
|
101 |
Hughes A L, Gottschling D E (2012). An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature, 492(7428): 261–265
|
102 |
Imai S, Armstrong C M, Kaeberlein M, Guarente L (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403(6771): 795–800
|
103 |
Imai S I, Guarente L (2014). NAD and sirtuins in aging and disease. Trends Cell Biol.
|
104 |
Ivy J M, Klar A J, Hicks J B (1986). Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol, 6: 688–702
|
105 |
Jacinto E, Lorberg A (2008). TOR regulation of AGC kinases in yeast and mammals. Biochem J, 410(1): 19–37
|
106 |
Jazwinski S M (1990). An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae. J Gerontol, 45(3): B68–B74
|
107 |
Jazwinski S M (2000). Aging and longevity genes. Acta Biochim Pol, 47(2): 269–279
|
108 |
Jia S H, Li Y, Parodo J, Kapus A, Fan L, Rotstein O D, Marshall J C (2004). Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest, 113(9): 1318–1327
|
109 |
Jiang J C, Jaruga E, Repnevskaya M V, Jazwinski S M (2000). An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J, 14(14): 2135–2137
|
110 |
Jouandot D 2nd, Roy A, Kim J H (2011). Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1. J Cell Biochem, 112(11): 3268–3275
|
111 |
Kaeberlein M, Andalis A A, Fink G R, Guarente L (2002). High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol, 22(22): 8056–8066
|
112 |
Kaeberlein M, Hu D, Kerr E O, Tsuchiya M, Westman E A, Dang N, Fields S, Kennedy B K (2005a). Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet, 1(5): e69
|
113 |
Kaeberlein M, Kirkland K T, Fields S, Kennedy B K (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol, 2(9): E296
|
114 |
Kaeberlein M, Powers R W 3rd, Steffen K K, Westman E A, Hu D, Dang N, Kerr E O, Kirkland K T, Fields S, Kennedy B K (2005b). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310(5751): 1193–1196
|
115 |
Kamada Y, Fujioka Y, Suzuki N N, Inagaki F, Wullschleger S, Loewith R, Hall M N, Ohsumi Y (2005). Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol, 25(16): 7239–7248
|
116 |
Kang H J, Jeong S J, Kim K N, Baek I J, Chang M, Kang C M, Park Y S, Yun C W (2014). A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J, 457(3): 391–400
|
117 |
Kato M, Lin S J (2014a). Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst), 23: 49–58
|
118 |
Kato M, Lin S J (2014b). YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae. J Biol Chem, 289(22): 15577–15587
|
119 |
Keith C T, Schreiber S L (1995). PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science, 270(5233): 50–51
|
120 |
Kenyon C (2001). A conserved regulatory system for aging. Cell, 105(2): 165–168
|
121 |
Kim J H, Brachet V, Moriya H, Johnston M (2006). Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. Eukaryot Cell, 5(1): 167–173
|
122 |
Kim J H, Johnston M (2006). Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem, 281(36): 26144–26149
|
123 |
Kornitzer D, Raboy B, Kulka R G, Fink G R (1994). Regulated degradation of the transcription factor Gcn4. EMBO J, 13(24): 6021–6030
|
124 |
Kruegel U, Robison B, Dange T, Kahlert G, Delaney J R, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami C J, Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy B K, Schmidt M (2011). Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet, 7(9): e1002253
|
125 |
Lamming D W, Latorre-Esteves M, Medvedik O, Wong S N, Tsang F A, Wang C, Lin S J, Sinclair D A (2005). HST2 mediates SIR2-independent life-span extension by calorie restriction. Science, 309(5742): 1861–1864
|
126 |
Lamming D W, Wood J G, Sinclair D A (2004). Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol, 53(4): 1003–1009
|
127 |
Landry J, Sutton A, Tafrov S T, Heller R C, Stebbins J, Pillus L, Sternglanz R (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA, 97(11): 5807–5811
|
128 |
Lascaris R, Bussemaker H J, Boorsma A, Piper M, van der Spek H, Grivell L, Blom J (2003). Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol, 4(1): R3
|
129 |
Lee P, Kim M S, Paik S M, Choi S H, Cho B R, Hahn J S (2013). Rim15-dependent activation of Hsf1 and Msn2/4 transcription factors by direct phosphorylation in Saccharomyces cerevisiae. FEBS Lett, 587(22): 3648–3655
|
130 |
Lee Y S, Huang K, Quiocho F A, O’Shea E K (2008). Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol, 4(1): 25–32
|
131 |
Lee Y S, Mulugu S, York J D, O’Shea E K (2007). Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science, 316(5821): 109–112
|
132 |
Lenburg M E, O’Shea E K (1996). Signaling phosphate starvation. Trends Biochem Sci, 21(10): 383–387
|
133 |
Lewis C A, Parker S J, Fiske B P, McCloskey D, Gui D Y, Green C R, Vokes N I, Feist A M, Vander Heiden M G, Metallo C M (2014). Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell, 55(2): 253–263
|
134 |
Li B, Skinner C, Castello P R, Kato M, Easlon E, Xie L, Li T, Lu S P, Wang C, Tsang F, Poyton R O, Lin S J (2011). Identification of potential calorie restriction-mimicking yeast mutants with increased mitochondrial respiratory chain and nitric oxide levels. J Aging Res, 2011: 673185
|
135 |
Li M, Valsakumar V, Poorey K, Bekiranov S, Smith J S (2013). Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol, 14(5): R48
|
136 |
Li P L, Zhang Y, Abais J M, Ritter J K, Zhang F (2013). Cyclic ADP-ribose and NAADP in vascular regulation and diseases. Messenger (Los Angel), 2(2): 63–85
|
137 |
Lin S J, Defossez P A, Guarente L (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 289(5487): 2126–2128
|
138 |
Lin S J, Ford E, Haigis M, Liszt G, Guarente L (2004). Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev, 18(1): 12–16
|
139 |
Lin S J, Kaeberlein M, Andalis A A, Sturtz L A, Defossez P A, Culotta V C, Fink G R, Guarente L (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 418(6895): 344–348
|
140 |
Lin S S, Manchester J K, Gordon J I (2003). Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem, 278(15): 13390–13397
|
141 |
Lin Y Y, Lu J Y, Zhang J, Walter W, Dang W, Wan J, Tao S C, Qian J, Zhao Y, Boeke J D, Berger S L, Zhu H (2009). Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell, 136(6): 1073–1084
|
142 |
Liu Z, Thornton J, Spírek M, Butow R A (2008). Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol Cell Biol, 28(2): 551–563
|
143 |
Ljungdahl P O (2009). Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans, 37(Pt 1): 242–247
|
144 |
Ljungdahl P O, Daignan-Fornier B (2012). Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics, 190(3): 885–929
|
145 |
Llorente B, Dujon B (2000). Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett, 475(3): 237–241
|
146 |
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo J L, Bonenfant D, Oppliger W, Jenoe P, Hall M N (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 10(3): 457–468
|
147 |
Longo V D (2003). The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol, 38(7): 807–811
|
148 |
Longo V D, Fabrizio P (2012). Chronological aging in Saccharomyces cerevisiae. Subcell Biochem, 57: 101–121
|
149 |
Lu J Y, Lin Y Y, Sheu J C, Wu J T, Lee F J, Chen Y, Lin M I, Chiang F T, Tai T Y, Berger S L, Zhao Y, Tsai K S, Zhu H, Chuang L M, Boeke J D (2011). Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell, 146(6): 969–979
|
150 |
Lu S P, Kato M, Lin S J (2009). Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J Biol Chem, 284(25): 17110–17119
|
151 |
Lu S P, Lin S J (2010). Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction. Biochim Biophys Acta, 1804(8): 1567–1575
|
152 |
Lu S P, Lin S J (2011). Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. J Biol Chem, 286(16): 14271–14281
|
153 |
Lundh F, Mouillon J M, Samyn D, Stadler K, Popova Y, Lagerstedt J O, Thevelein J M, Persson B L (2009). Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry, 48(21): 4497–4505
|
154 |
Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S (2004). Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem, 11(7): 873–885
|
155 |
Marzluf G A (1997). Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol, 51(1): 73–96
|
156 |
Matecic M, Smith D L, Pan X, Maqani N, Bekiranov S, Boeke J D, Smith J S (2010). A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet, 6(4): e1000921
|
157 |
Mayer F V, Heath R, Underwood E, Sanders M J, Carmena D, McCartney R R, Leiper F C, Xiao B, Jing C, Walker P A, Haire L F, Ogrodowicz R, Martin S R, Schmidt M C, Gamblin S J, Carling D (2011). ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab, 14(5): 707–714
|
158 |
McCartney R R, Schmidt M C (2001). Regulation of Snf1 kinase. ACTIVATION REQUIRES PHOSPHORYLATION OF THREONINE 210 BY AN UPSTREAM KINASE AS WELL AS A DISTINCT STEP MEDIATED BY THE SNF4 SUBUNIT. J Biol Chem, 276(39): 36460–36466
|
159 |
McNabb D S, Pinto I (2005). Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot Cell, 4(11): 1829–1839
|
160 |
McNabb D S, Xing Y, Guarente L (1995). Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev, 9(1): 47–58
|
161 |
Medvedik O, Lamming D W, Kim K D, Sinclair D A (2007). MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol, 5(10): e261
|
162 |
Menoyo S, Ricco N, Bru S, Hernández-Ortega S, Escoté X, Aldea M, Clotet J (2013). Phosphate-activated cyclin-dependent kinase stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol, 33(7): 1273–1284
|
163 |
Mense S M, Zhang L (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res, 16(8): 681–692
|
164 |
Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leão C, Costa V, Rodrigues F, Burhans W C, Ludovico P (2010). Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA, 107(34): 15123–15128
|
165 |
Moazed D (2001). Common themes in mechanisms of gene silencing. Mol Cell, 8(3): 489–498
|
166 |
Moriya H, Johnston M (2004). Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA, 101(6): 1572–1577
|
167 |
Mortimer R K, Johnston J R (1959). Life span of individual yeast cells. Nature, 183(4677): 1751–1752
|
168 |
Mouillon J M, Persson B L (2005). Inhibition of the protein kinase A alters the degradation of the high-affinity phosphate transporter Pho84 in Saccharomyces cerevisiae. Curr Genet, 48(4): 226–234
|
169 |
Murakami C, Delaney J R, Chou A, Carr D, Schleit J, Sutphin G L, An E H, Castanza A S, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong K S, Kim J R, Klum S, Liao E, Lin M S, Lo W, Miller H, Moller R, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector B L, Vander Wende H, Wang A M, Wasko B M, Olsen B, Kaeberlein M (2012). pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle, 11(16): 3087–3096
|
170 |
Murakami C J, Wall V, Basisty N, Kaeberlein M (2011). Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast. PLoS ONE, 6(9): e24530
|
171 |
Natalini P, Ruggieri S, Raffaelli N, Magni G (1986). Nicotinamide mononucleotide adenylyltransferase. Molecular and enzymatic properties of the homogeneous enzyme from baker’s yeast. Biochemistry, 25(12): 3725–3729
|
172 |
Natarajan K, Meyer M R, Jackson B M, Slade D, Roberts C, Hinnebusch A G, Marton M J (2001). Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol, 21(13): 4347–4368
|
173 |
Niles B J, Powers T (2014). TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol Biol Cell, 25(24): 3962–3972
|
174 |
Noda T, Klionsky D J (2008). The quantitative Pho8Delta60 assay of nonspecific autophagy. Methods Enzymol, 451: 33–42
|
175 |
North B J, Verdin E (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol, 5(5): 224
|
176 |
Ocampo A, Liu J, Barrientos A (2013). NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins. Hum Mol Genet, 22(9): 1699–1708
|
177 |
Ocampo A, Liu J, Schroeder E A, Shadel G S, Barrientos A (2012). Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab, 16(1): 55–67
|
178 |
Ohashi K, Kawai S, Murata K (2013). Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae. Eukaryot Cell, 12(5): 648–653
|
179 |
Omnus D J, Ljungdahl P O (2014). Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron. Mol Biol Cell, 25(23): 3823–3833
|
180 |
Omnus D J, Pfirrmann T, Andréasson C, Ljungdahl P O (2011). A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5. Mol Biol Cell, 22(15): 2754–2765
|
181 |
Overton M C, Chinault S L, Blumer K J (2005). Oligomerization of G-protein-coupled receptors: lessons from the yeast Saccharomyces cerevisiae. Eukaryot Cell, 4(12): 1963–1970
|
182 |
Pan Y (2011). Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp Gerontol, 46(11): 847–852
|
183 |
Pan Y, Schroeder E A, Ocampo A, Barrientos A, Shadel G S (2011). Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab, 13(6): 668–678
|
184 |
Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Bécam A M, Rytka J, Herbert C J (2002). Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett, 517(1–3): 97–102
|
185 |
Parua P K, Ratnakumar S, Braun K A, Dombek K M, Arms E, Ryan P M, Young E T (2010). 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol Cell Biol, 30(22): 5273–5283
|
186 |
Pasula S, Jouandot D 2nd, Kim J H (2007). Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. FEBS Lett, 581(17): 3230–3234
|
187 |
Peeters T, Louwet W, Geladé R, Nauwelaers D, Thevelein J M, Versele M (2006). Kelch-repeat proteins interacting with the Gα protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci USA, 103(35): 13034–13039
|
188 |
Perrod S, Cockell M M, Laroche T, Renauld H, Ducrest A L, Bonnard C, Gasser S M (2001). A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J, 20(1–2): 197–209
|
189 |
Persson B L, Lagerstedt J O, Pratt J R, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F (2003). Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet, 43(4): 225–244
|
190 |
Pinson B, Vaur S, Sagot I, Coulpier F, Lemoine S, Daignan-Fornier B (2009). Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. Genes Dev, 23(12): 1399–1407
|
191 |
Popova Y, Thayumanavan P, Lonati E, Agrochão M, Thevelein J M (2010). Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci USA, 107(7): 2890–2895
|
192 |
Powers R W 3rd, Kaeberlein M, Caldwell S D, Kennedy B K, Fields S (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev, 20(2): 174–184
|
193 |
Preiss J, Handler P (1958a). Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem, 233(2): 488–492
|
194 |
Preiss J, Handler P (1958b). Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem, 233(2): 493–500
|
195 |
Ramsey K M, Mills K F, Satoh A, Imai S (2008). Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell, 7(1): 78–88
|
196 |
Revollo J R, Grimm A A, Imai S (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyl transferase regulates Sir2 activity in mammalian cells. J Biol Chem, 279(49): 50754–50763
|
197 |
Rine J, Herskowitz I (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics, 116(1): 9–22
|
198 |
Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029): 113–118
|
199 |
Rolland F, De Winde J H, Lemaire K, Boles E, Thevelein J M, Winderickx J (2000). Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol, 38(2): 348–358
|
200 |
Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein J M, De Virgilio C, De Moor B, Winderickx J (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol, 55(3): 862–880
|
201 |
Roth S, Kumme J, Schüller H J (2004). Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr Genet, 45(3): 121–128
|
202 |
Rubenstein E M, McCartney R R, Zhang C, Shokat K M, Shirra M K, Arndt K M, Schmidt M C (2008). Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem, 283(1): 222–230
|
203 |
Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein J M (2010). Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res, 10(2): 134–149
|
204 |
Samyn D R, Ruiz-Pávon L, Andersson M R, Popova Y, Thevelein J M, Persson B L (2012). Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. Biochem J, 445(3): 413–422
|
205 |
Sancak Y, Peterson T R, Shaul Y D, Lindquist R A, Thoreen C C, Bar-Peled L, Sabatini D M (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320(5882): 1496–1501
|
206 |
Sanz P (2003). Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem Soc Trans, 31(Pt 1): 178–181
|
207 |
Sasaki Y, Araki T, Milbrandt J (2006). Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci, 26(33): 8484–8491
|
208 |
Sauve A A, Schramm V L (2003). Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry, 42(31): 9249–9256
|
209 |
Scheckhuber C Q, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz H D (2007). Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol, 9(1): 99–105
|
210 |
Schleit J, Johnson S C, Bennett C F, Simko M, Trongtham N, Castanza A, Hsieh E J, Moller R M, Wasko B M, Delaney J R, Sutphin G L, Carr D, Murakami C J, Tocchi A, Xian B, Chen W, Yu T, Goswami S, Higgins S, Jeong K S, Kim J R, Klum S, Liao E, Lin M S, Lo W, Miller H, Olsen B, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector B L, Wende H V, An E H, Fletcher M, Jelic M, Rabinovitch P S, Maccoss M J, Han J D, Kennedy B K, Kaeberlein M (2013). Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell, 12(6): 1050–1061
|
211 |
Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, Birringer M, Groth M, Segref A, Kanfi Y, Price N L, Schmeisser S, Schuster S, Pfeiffer A F, Guthke R, Platzer M, Hoppe T, Cohen H Y, Zarse K, Sinclair D A, Ristow M, Klum S, Liao E, Lin M S, Lo W, Miller H, Olsen B, Peng Z J, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector B L, Wende H V, An E H, Fletcher M, Jelic M, Rabinovitch P S, Maccoss M J, Han J D, Kennedy B K, Kaeberlein M (2013). Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol, 9(11): 693–700
|
212 |
Schmidt M T, Smith B C, Jackson M D, Denu J M (2004). Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J Biol Chem, 279(38): 40122–40129
|
213 |
Schmidt-Brauns J, Herbert M, Kemmer G, Kraiss A, Schlör S, Reidl J (2001). Is a NAD pyrophosphatase activity necessary for Haemophilus influenzae type b multiplication in the blood stream? Int J Med Microbiol, 291(3): 219–225
|
214 |
Schüller H J (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet, 43(3): 139–160
|
215 |
Schulz T J, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab, 6(4): 280–293
|
216 |
Shama S, Lai C Y, Antoniazzi J M, Jiang J C, Jazwinski S M (1998). Heat stress-induced life span extension in yeast. Exp Cell Res, 245(2): 379–388
|
217 |
Shimada K, Filipuzzi I, Stahl M, Helliwell S B, Studer C, Hoepfner D, Seeber A, Loewith R, Movva N R, Gasser S M (2013). TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell, 51(6): 829–839
|
218 |
Shirra M K, McCartney R R, Zhang C, Shokat K M, Schmidt M C, Arndt K M (2008). A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J Biol Chem, 283(51): 35889–35898
|
219 |
Shirra M K, Rogers S E, Alexander D E, Arndt K M (2005). The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter. Genetics, 169(4): 1957–1972
|
220 |
Sies H (1982). Metabolic Compartmentation. Orlando, FL, Academic Press
|
221 |
Smets B, De Snijder P, Engelen K, Joossens E, Ghillebert R, Thevissen K, Marchal K, Winderickx J (2008). Genome-wide expression analysis reveals TORC1-dependent and-independent functions of Sch9. FEMS Yeast Res, 8(8): 1276–1288
|
222 |
Smith D L Jr, McClure J M, Matecic M, Smith J S (2007). Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell, 6(5): 649–662
|
223 |
Smith J S, Boeke J D (1997). An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev, 11(2): 241–254
|
224 |
Smith J S, Brachmann C B, Celic I, Kenna M A, Muhammad S, Starai V J, Avalos J L, Escalante-Semerena J C, Grubmeyer C, Wolberger C, Boeke J D (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA, 97(12): 6658–6663
|
225 |
Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B (2007). Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol, 27(22): 7895–7905
|
226 |
Sporty J, Lin S J, Kato M, Ognibene T, Stewart B, Turteltaub K, Bench G (2009). Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae. Yeast, 26(7): 363–369
|
227 |
Staschke K A, Dey S, Zaborske J M, Palam L R, McClintick J N, Pan T, Edenberg H J, Wek R C (2010). Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem, 285(22): 16893–16911
|
228 |
Steffen K K, McCormick M A, Pham K M, MacKay V L, Delaney J R, Murakami C J, Kaeberlein M, Kennedy B K (2012). Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics, 191(1): 107–118
|
229 |
Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997). SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev, 11(1): 83–93
|
230 |
Sturgill T W, Cohen A, Diefenbacher M, Trautwein M, Martin D E, Hall M N (2008). TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell, 7(10): 1819–1830
|
231 |
Sun J, Kale S P, Childress A M, Pinswasdi C, Jazwinski S M (1994). Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem, 269(28): 18638–18645
|
232 |
Sutherland C M, Hawley S A, McCartney R R, Leech A, Stark M J, Schmidt M C, Hardie D G (2003). Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol, 13(15): 1299–1305
|
233 |
Sutton A, Heller R C, Landry J, Choy J S, Sirko A, Sternglanz R (2001). A novel form of transcriptional silencing by Sum1-1 requires Hst1 and the origin recognition complex. Mol Cell Biol, 21(10): 3514–3522
|
234 |
Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I, Cameroni E, De Virgilio C, Winderickx J (2006). Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div, 1(1): 3
|
235 |
Tanny J C, Kirkpatrick D S, Gerber S A, Gygi S P, Moazed D (2004). Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions. Mol Cell Biol, 24(16): 6931–6946
|
236 |
Thevelein J M, Cauwenberg L, Colombo S, Donation M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, Versele M, Wera S, Winderickx J, Wera S, Winderickx J, De Winde J H, Van Dijck P (2000). Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast. Enzyme Microb Technol, 26(9–10): 819–825
|
237 |
Todisco S, Agrimi G, Castegna A, Palmieri F (2006). Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem, 281(3): 1524–1531
|
238 |
Tsang F, James C, Kato M, Myers V, Ilyas I, Tsang M, Lin S J (2015). Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling extends replicative life span by enhancing NAD+ homeostasis in Saccharomyces cerevisiae. J Biol Chem, 290(20):12753–12764
|
239 |
Ueda Y, Oshima Y (1975). A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae. Mol Gen Genet, 136: 255–259
|
240 |
Unal E, Kinde B, Amon A (2011). Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science, 332(6037): 1554–1557
|
241 |
Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach J R, De Virgilio C, Hall M N, Loewith R (2007). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell, 26(5): 663–674
|
242 |
van der Veer E, Nong Z, O’Neil C, Urquhart B, Freeman D, Pickering J G (2005). Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res, 97(1): 25–34
|
243 |
van Oevelen C J, van Teeffelen H A, van Werven F J, Timmers H T (2006). Snf1p-dependent Spt-Ada-Gcn5-acetyltransferase (SAGA) recruitment and chromatin remodeling activities on the HXT2 and HXT4 promoters. J Biol Chem, 281(7): 4523–4531
|
244 |
Veatch J R, McMurray M A, Nelson Z W, Gottschling D E (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell, 137(7): 1247–1258
|
245 |
Vickers M F, Yao S Y, Baldwin S A, Young J D, Cass C E (2000). Nucleoside transporter proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes. J Biol Chem, 275(34): 25931–25938
|
246 |
Vlahakis A, Graef M, Nunnari J, Powers T (2014). TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA, 111(29): 10586–10591
|
247 |
Vlahakis A, Powers T (2014). A role for TOR complex 2 signaling in promoting autophagy. Autophagy, 10(11): 2085–2086
|
248 |
Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein J M (2011). Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem, 286(25): 22017–22027
|
249 |
Wang C, Skinner C, Easlon E, Lin S J (2009). Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response. Genetics, 183(4): 1373–1384
|
250 |
Wang J, Jiang J C, Jazwinski S M (2010). Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol, 45(7–8): 621–631
|
251 |
Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C (2008). Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol, 69(1): 277–285
|
252 |
Wanke V, Pedruzzi I, Cameroni E, Dubouloz F, De Virgilio C (2005). Regulation of G0 entry by the Pho80-Pho85 cyclin-CDK complex. EMBO J, 24(24): 4271–4278
|
253 |
Wedaman K P, Reinke A, Anderson S, Yates J 3rd, McCaffery J M, Powers T (2003). Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell, 14(3): 1204–1220
|
254 |
Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo V D (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet, 4(1): e13
|
255 |
Weinberger M, Feng L, Paul A, Smith D L Jr, Hontz R D, Smith J S, Vujcic M, Singh K K, Huberman J A, Burhans W C (2007). DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS ONE, 2(8): e748
|
256 |
Weindruch W, Walford R L (1998). The retardation of aging and diseases by dietary restriction. Springfield, Illinois, USA, Charles C. Thomas
|
257 |
Wek R C, Jackson B M, Hinnebusch A G (1989). Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci USA, 86(12): 4579–4583
|
258 |
Wiederhold E, Gandhi T, Permentier H P, Breitling R, Poolman B, Slotboom D J (2009). The yeast vacuolar membrane proteome. Mol Cell Proteomics, 8(2): 380–392
|
259 |
Wilson J M, Le V Q, Zimmerman C, Marmorstein R, Pillus L (2006). Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Rep, 7(12): 1247–1251
|
260 |
Wogulis M, Chew E R, Donohoue P D, Wilson D K (2008). Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cerevisiae using crystallographic, bioinformatic and biochemical evidence. Biochemistry, 47(6): 1608–1621
|
261 |
Wu Z, Liu S Q, Huang D (2013). Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae. PLoS ONE, 8(5): e64448
|
262 |
Wykoff D D, O’Shea E K (2001). Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics, 159(4): 1491–1499
|
263 |
Xiao B, Heath R, Saiu P, Leiper F C, Leone P, Jing C, Walker P A, Haire L, Eccleston J F, Davis C T, Martin S R, Carling D, Gamblin S J (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 449(7161): 496–500
|
264 |
Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon A K (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J, 18(22): 6448–6454
|
265 |
Xu Y F, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy A A, Yakunin A F, Broach J R, Rabinowitz J D (2013). Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol, 9(1): 665
|
266 |
Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, Mead H, Wright J, Schneider B L (2011). Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle, 10(1): 144–155
|
267 |
Yao Y, Tsuchiyama S, Yang C, Bulteau A L, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy B K, Schmidt M (2015). Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. PLoS Genet, 11(1): e1004968
|
268 |
Young J D, Yao S Y, Sun L, Cass C E, Baldwin S A (2008). Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica, 38(7–8): 995–1021
|
269 |
Zaborske J M, Narasimhan J, Jiang L, Wek S A, Dittmar K A, Freimoser F, Pan T, Wek R C (2009). Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem, 284(37): 25254–25267
|
270 |
Zaborske J M, Wu X, Wek R C, Pan T (2010). Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. BMC Biochem, 11(1): 29
|
271 |
Zaman S, Lippman S I, Schneper L, Slonim N, Broach J R (2009). Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol, 5: 245
|
272 |
Zargari A, Boban M, Heessen S, Andréasson C, Thyberg J, Ljungdahl P O (2007). Inner nuclear membrane proteins Asi1, Asi2, and Asi3 function in concert to maintain the latent properties of transcription factors Stp1 and Stp2. J Biol Chem, 282(1): 594–605
|
273 |
Zhai R G, Zhang F, Hiesinger P R, Cao Y, Haueter C M, Bellen H J (2008). NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature, 452(7189): 887–891
|
274 |
Zhang T, Péli-Gulli M P, Yang H, De Virgilio C, Ding J (2012). Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1. Structure, 20(12): 2151–2160
|
275 |
Zitomer R S, Lowry C V (1992). Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev, 56(1): 1–11
|
276 |
Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos A P, Ayté J, Hidalgo E (2010). Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO J, 29(5): 981–991
|
/
〈 | 〉 |