REVIEW

Plant stem cells and their regulations in shoot apical meristems

  • Chun-Ming LIU ,
  • Yuxin HU
Expand
  • Center for Signal Transduction & Metabolomics, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

Received date: 07 Sep 2010

Accepted date: 16 Sep 2010

Published date: 01 Oct 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Stem cells in plants, established during embryogenesis, are located in the centers of the shoot apical meristem (SAM) and the root apical meristem (RAM). Stem cells in SAM have a capacity to renew themselves and to produce new organs and tissues indefinitely. Although fully differentiated organs such as leaves do not contain stem cells, cells in such organs do have the capacity to re-establish new stem cells, especially under the induction of phytohormones in vitro. Cytokinin and auxin are critical in creating position signals in the SAM to maintain the stem cell organizing center and to position the new organ primordia, respectively. This review addresses the distinct features of plant stem cells and focuses on how stem cell renewal and differentiation are regulated in SAMs.

Cite this article

Chun-Ming LIU , Yuxin HU . Plant stem cells and their regulations in shoot apical meristems[J]. Frontiers in Biology, 2010 , 5(5) : 417 -423 . DOI: 10.1007/s11515-010-0880-1

Acknowledgements

The stem cell researches carried out in Liu and Hu’s laboratories are supported in part by funds from the Ministry of Science and Technology of China (Nos. 2006CB910600 and 2007CB948200).
1
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 119(1): 109–120

2
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115(5): 591–602

3
Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289(5479): 617–619

DOI

4
Casamitjana-Martínez E, Hofhuis H F, Xu J, Liu C M, Heidstra R, Scheres B (2003). Root-specific CLE19 overexpression and the sol/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol, 13(16): 1435–1441

DOI

5
Chu H, Qian Q, Liang W, Yin C, Tan H, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D (2006). The FLORAL ORGAN NUMBER4 organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol, 142(3): 1039–1052

DOI

6
Clark S E, Williams R W, Meyerowitz E M (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89(4): 575–585

7
Cock J M, McCormick S (2001). A large family of genes that share homology with CLAVATA3. Plant Physiol, 126(3): 939–942

DOI

8
Fiers M, Golemiec E, van der Schors R, van der Geest L, Li K W, Stiekema W J, Liu C M (2006). The CLAVATA3/ESR motif of CLAVATA3 is functionally independent from the nonconserved flanking sequences. Plant Physiol, 141(4): 1284–1292

DOI

9
Fiers M, Golemiec E, Xu J, van der Geest L, Heidstra R, Stiekema W, Liu C M (2005). The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell, 17(9): 2542–2553

DOI

10
Fiers M, Ku K L, Liu C M (2007). CLE peptide ligands and their roles in establishing meristems. Curr Opin Plant Biol, 10(1): 39–43

DOI

11
Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283(5409): 1911–1914

DOI

12
Geier F, Lohmann J U, Gerstung M, Maier A T, Timmer J, Fleck C (2008). A quantitative and dynamic model for plant stem cell regulation. PLoS One, 3(10): e3553

DOI

13
Gordon S P, Heisler M G, Reddy G V, Ohno C, Das P, Meyerowitz E M (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 134(19): 3539–3548

DOI

14
Gross-Hardt R, Laux T (2003). Stem cell regulation in the shoot meristem. J Cell Sci, 116(Pt 9): 1659–1666

DOI

15
Hass C, Lohrmann J, Albrecht V, Sweere U, Hummel F, Yoo S D, Hwang I, Zhu T, Schäfer E, Kudla J, Harter K (2004). The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. EMBO J, 23(16): 3290–3302

DOI

16
Heisler M G, Ohno C, Das P, Sieber P, Reddy G V, Long J A, Meyerowitz E M (2005). Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol, 15(21): 1899–1911

DOI

17
Hobe M, Müller R, Grünewald M, Brand U, Simon R (2003). Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Dev Genes Evol, 213(8): 371–381

DOI

18
Hwang I, Sheen J (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413(6854): 383–389

DOI

19
Jeong S, Trotochaud A E, Clark S E (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 11(10): 1925–1934

20
Jönsson H, Heisler M, Reddy G V, Agrawal V, Gor V, Shapiro B E, Mjolsness E, Meyerowitz E M (2005). Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics, 21(Suppl 1): i232–i240

DOI

21
Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006). A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science, 313(5788): 845–848

DOI

22
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 445(7128): 652–655

DOI

23
Laux T, Mayer K F, Berger J, Jürgens G (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122(1): 87–96

24
Leibfried A, To J P, Busch W, Stehling S, Kehle A, Demar M, Kieber J J, Lohmann J U (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438(7071): 1172–1175

DOI

25
Lenhard M, Bohnert A, Jürgens G, Laux T (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell, 105(6): 805–814

26
Lenhard M, Laux T (2003). Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development, 130(14): 3163–3173

DOI

27
Leyser H M O, Furner I J (1992). Characterisation of three shoot apical meristem mutants of Arabidopsis thaliana. Development, 116: 397–403

28
Lindsay D L, Sawhney V K, Bonham-Smith P C (2006). Cytokinin-induced changes in CLAVATA1 and WUSCHEL expression temporally coincide with altered floral development in Arabidopsis. Plant Sci, 170: 1111–1117

DOI

29
Liu C M, Xu Z, Chua N H (1993). Auxin Polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell, 5(6): 621–630

30
Mayer K F, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95(6): 805–815

31
Müller B, Sheen J (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453(7198): 1094–1097

DOI

32
Müller R, Bleckmann A, Simon R (2008). The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell, 20(4): 934–946

DOI

33
Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004). Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell, 16(6):1365–1377

DOI

34
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 319(5861): 294

DOI

35
Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol, 5(8): 578–580

DOI

36
Philipson W R (1954). Organization of the shoot apex in dicotyledons. Phytomorphogy, 4: 70–75

37
Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003). Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development, 130(17): 4073–4083

DOI

38
Reinhardt D, Mandel T, Kuhlemeier C (2000). Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12(4): 507–518

39
Riefler M, Novak O, Strnad M, Schmülling T (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 18(1): 40–54

DOI

40
Sabatini S, Heidstra R, Wildwater M, Scheres B (2003). SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev, 17(3): 354–358

DOI

41
Sakai H, Aoyama T, Oka A (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J, 24(6): 703–711

DOI

42
Scheres B (2007). Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol, 8(5): 345–354

DOI

43
Schoof H, Lenhard M, Haecker A, Mayer K F X, Jürgens G, Laux T (2000). The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100(6): 635–644

44
Singh M B, Bhalla P L (2006). Plant stem cells carve their own niche. Trends Plant Sci, 11(5): 241–246

DOI

45
Skoog F, Miller C O (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol, 54(11): 118–130

46
Steeves T A, Sussex I M (1989). Patterns in plant development. 2nd ed. Cambridge: Cambridge University Press

DOI

47
Su Y H, Zhao X Y, Liu Y B, Zhang C L, O’Neill S D, Zhang X S (2009). Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J, 59(3): 448–460

DOI

48
Sussex I M (1955). Morphologenesis in Solanum tuberosum L.: Apical structure and developmental pattern of the juvenile shoot. Phytomorphology, 5: 253–273

49
Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque M P, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones J D, Taylor C G, Schachtman D P, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett M J (2008). The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol, 10(8): 946–954

DOI

50
To J P, Haberer G, Ferreira F J, Deruère J, Mason M G, Schaller G E, Alonso J M, Ecker J R, Kieber J J (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 16(3): 658–671

DOI

51
Trotochaud A E, Hao T, Wu G, Yang Z, Clark S E (1999). The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell, 11(3): 393–406

52
van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995). Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature, 378(6552): 62–65

DOI

53
van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997). Short-range control of cell differentiation in the Arabidopsis root meristem. Nature, 390(6657): 287–289

DOI

54
Zhu Y F, Wang Y, Li R, Song X, Wang Q, Huang S, Jin J B, Liu C M, Lin J X (2010). Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J, 61(2): 223–233

DOI

Outlines

/