RESEARCH ARTICLE

Exogenous nucleic acids aggregate in non-P-body cytoplasmic granules when transfected into cultured cells

  • Huang HUANG 1 ,
  • Na WEI 1 ,
  • Yingfei XIONG 1,2 ,
  • Feng YANG 1 ,
  • Huaqiang FANG 1 ,
  • Wenjun XIE 1 ,
  • Zhuan ZHOU 1 ,
  • Heping CHENG 1 ,
  • Zicai LIANG , 1 ,
  • Quan DU , 1
Expand
  • 1. Institute of Molecular Medicine, Peking University, Beijing 100871, China
  • 2. Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, China

Received date: 08 Mar 2010

Accepted date: 31 Mar 2010

Published date: 01 Jun 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

To modulate gene expression in research studies or in potential clinical therapies, transfection of exogenous nucleic acids including plasmid DNA and small interference RNA (siRNA) are generally performed. However, the cellular processing and the fate of these nucleic acids remain elusive. By investigating the cellular behavior of transfected nucleic acids using confocal imaging, here we show that when siRNA was co-transfected into cultured cells with other nucleic acids, including single-stranded RNA oligonucleotides, single and double-stranded DNA oligonucleotides, as well as long double-stranded plasmid DNA, they all aggregate in the same cytoplasmic granules. Interestingly, the amount of siRNA aggregating in granules was found not to correlate with the gene silencing activity, suggesting that assembly of cytoplasmic granules triggered by siRNA transfection may be separable from the siRNA silencing event. Our results argue against the claim that the siRNA-aggregating granules are the functional site of RNA interference (RNAi). Taken together, our studies suggest that, independent of their types or forms, extraneously transfected nucleic acids are processed through a common cytoplasmic pathway and trigger the formation of a new type of cytoplasmic granules “ transfection granules” .

Cite this article

Huang HUANG , Na WEI , Yingfei XIONG , Feng YANG , Huaqiang FANG , Wenjun XIE , Zhuan ZHOU , Heping CHENG , Zicai LIANG , Quan DU . Exogenous nucleic acids aggregate in non-P-body cytoplasmic granules when transfected into cultured cells[J]. Frontiers in Biology, 2010 , 5(3) : 272 -281 . DOI: 10.1007/s11515-010-0047-0

Acknowledgements

We appreciate Drs. Xianhua WANG and Chaoliang WEI for technical support, and Drs. Iain C. BRUCE and Tong ZHANG for critically reading this manuscript. The authors have no competing interests.
1
Anderson P, Kedersha N (2006). RNA granules. J Cell Biol, 172(6): 803– 808

DOI

2
Anderson P, Kedersha N (2008). Stress granules: the Tao of RNA triage. Trends Biochem Sci, 33(3): 141– 150

3
Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M (2008). Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol, 10(11): 1324– 1332

DOI

4
Berezhna S Y, Supekova L, Supek F, Schultz P G, Deniz A A (2006). siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci U S A, 103(20): 7682– 7687

DOI

5
Bhattacharyya S N, Habermacher R, Martine U, Closs E I, Filipowicz W (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell, 125(6): 1111– 1124

DOI

6
Brengues M, Teixeira D, Parker R (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science, 310(5747): 486– 489

DOI

7
Chiu Y L, Ali A, Chu C Y, Cao H, Rana T M (2004). Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol, 11(8): 1165– 1175

DOI

8
Chu C Y, Rana T M (2006). Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol, 4(7): e210

DOI

9
Coller J, Parker R (2005). General translational repression by activators of mRNA decapping. Cell, 122(6): 875– 886

DOI

10
de Semir D, Petriz J, Avinyó A, Larriba S, Nunes V, Casals T, Estivill X, Aran J M (2002). Non-viral vector-mediated uptake, distribution, and stability of chimeraplasts in human airway epithelial cells. J Gene Med, 4(3): 308– 322

DOI

11
Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007). P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol, 27(11): 3970– 3981

DOI

12
Godbey W T, Wu K K, Mikos A G (1999). Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A, 96(9): 5177– 5181

DOI

13
Golzio M, Teissie J, Rols M P (2002). Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A, 99(3): 1292– 1297

DOI

14
Jagannath A, Wood M J (2008) Localization of Double-stranded siRNA to Cytoplasmic P-Bodies Is Ago2-dependent and Results in Upregulation of GW182 and Ago2. Mol Biol Cell.

15
Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel J C, Fritzler M J, Chan E K (2005). Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol, 7(12): 1267– 1274

DOI

16
Jakymiw A, Pauley K M, Li S, Ikeda K, Lian S, Eystathioy T, Satoh M, Fritzler M J, Chan E K (2007). The role of GW/P-bodies in RNA processing and silencing. J Cell Sci, 120(Pt 8): 1317– 1323

DOI

17
Kedersha N, Anderson P (2007). Mammalian stress granules and processing bodies. Methods Enzymol, 431: 61– 81

DOI

18
Lian S, Fritzler M J, Katz J, Hamazaki T, Terada N, Satoh M, Chan E K (2007). Small interfering RNA-mediated silencing induces target-dependent assembly of GW/P bodies. Mol Biol Cell, 18(9): 3375– 3387

DOI

19
Liu J, Rivas F V, Wohlschlegel J, Yates J R 3rd, Parker R, Hannon G J (2005a). A role for the P-body component GW182 in microRNA function. Nat Cell Biol, 7(12): 1261– 1266

DOI

20
Liu J, Valencia-Sanchez M A, Hannon G J, Parker R (2005b). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol, 7(7): 719– 723

DOI

21
Lukacs G L, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman A S (2000). Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem, 275(3): 1625– 1629

DOI

22
Marcusson E G, Bhat B, Manoharan M, Bennett C F, Dean N M (1998). Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res, 26(8): 2016– 2023

DOI

23
Niidome T, Huang L (2002). Gene therapy progress and prospects: nonviral vectors. Gene Ther, 9(24): 1647– 1652

DOI

24
Pauley K M, Eystathioy T, Jakymiw A, Hamel J C, Fritzler M J, Chan E K (2006). Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep, 7(9): 904– 910

DOI

25
Sen G L, Blau H M (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol, 7(6): 633– 636

DOI

26
Serman A, Le Roy F, Aigueperse C, Kress M, Dautry F, Weil D (2007). GW body disassembly triggered by siRNAs independently of their silencing activity. Nucleic Acids Res, 35(14): 4715– 4727

DOI

27
Shimizu N, Kamezaki F, Shigematsu S (2005). Tracking of microinjected DNA in live cells reveals the intracellular behavior and elimination of extrachromosomal genetic material. Nucleic Acids Res, 33(19): 6296– 6307

DOI

28
St Johnston D (2005). Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol, 6(5): 363– 375

DOI

29
Vickers T A, Lima W F, Wu H, Nichols J G, Linsley P S, Crooke S T (2009). Off-target and a portion of target-specific siRNA mediated mRNA degradation is Ago2 ‘ Slicer’ independent and can be mediated by Ago1. Nucleic Acids Res, 37(20): 6927– 6941

DOI

30
Wells D J (2004). Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther, 11(18): 1363– 1369

DOI

Outlines

/