REVIEW

Outline and computational approaches of protein misfolding

  • Xin LIU
Expand
  • The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 05 Feb 2010

Accepted date: 23 Feb 2010

Published date: 01 Jun 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Protein misfolding is a general causation of classical conformational diseases and many pathogenic changes that are the result of structural conversion. Here I review recent progress in clinical and computational approaches for each stage of the misfolding process, aiming to present readers an outline for swift comprehension of this field.

Cite this article

Xin LIU . Outline and computational approaches of protein misfolding[J]. Frontiers in Biology, 2010 , 5(3) : 211 -218 . DOI: 10.1007/s11515-010-0037-2

1
Abrahamson M (1996). Molecular basis for amyloidosis related to hereditary brain hemorrhage. Scand J Clin Lab Invest, 226: 47–56

2
Bemporad F, Calloni G, Campioni S, Plakoutsi G, Taddei N, Chiti F (2006). Sequence and structural determinants of amyloid fibril formation. Acc Chem Res, 39: 620–627

3
Bitan G, Vollers S S, Teplow D B (2003). Elucidation of primary structure elements controlling early amyloid-beta protein oligomerisation. J Biol Chem, 278: 34882–34889

4
Bonvin A M (2006). Flexible protein-protein docking. Curr Opin Struct Biol, 16: 194–200

5
Bornholdt Z A, Prasad B V V (2008). X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature, 456: 985–988

6
Brändén C I, Tooze J (1999). Introduction to protein structure. 2nd ed. New York: Garland Publishing

7
Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002). Inherent cytotoxicity of aggregates implies a common origin for protein misfolding diseases. Nature, 416: 507–511

8
Caflisch A (2006). Computational models for the prediction of polypeptide aggregation propensity. Curr Opin Chem Biol, 10: 437–444

9
Capaldi A P, Kleanthous C, Radford S E (2002). Im7 folding mechanism: misfolding on a path to the native state. Nat Struct Biol, 9: 209–216

10
Carrell R W, Gooptu B (1998). Conformational changes and diseases-serpins, prions, and Alzheimer's. Curr Opin Struct Biol, 8: 799–809

11
Carrell R W, Lomas D A (1997). Conformational disease. Lancet, 350: 134–138

12
Castillo V, Ventura S (2009). Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases. PLoS Comput Biol, 5: e1000476

DOI

13
Caughey B, Lansbury P T (2003). Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci, 26: 267–298

14
Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G, Dobson C M (2002). Kinetic partitioning of protein folding and aggregation. Nat Struct Biol, 9:137–143

15
Davis R, Dobson C M, Vendruscolo M (2002). Determination of the structures of distinct transition state ensembles for a β-sheet peptide with parallel folding pathways. J Chem Phys, 117: 9510–9517

16
DeMarco M L, Daggett V (2004). From conversion to aggregation: Protofibril formation of the prion protein. Proc Natl Acad Sci USA, 101:2293–2298

17
Dill K A, Chan H S (1997). From Levinthal to pathways to funnels. Nat Struct Biol, 4: 10–19

18
Dinner A R, Sali A, Smith L J, Dobson C M, Karplus M (2000). Understanding protein folding via free energy surfaces from theory and experiment. Trends Biochem Sci, 25: 331–339

19
Dobson C M (1999). Protein misfolding, evolution and disease. Trends Biochem Sci, 24: 329–332

20
Dobson C M (2002). Getting out of shape-protein misfolding diseases. Nature, 418: 729–730

21
Dobson C M (2003). Protein folding and disease: a view from the first Horizon symposium. Nat Rev Drug Discov, 2: 154–160

22
Dobson C M (2004). Principles of protein folding, misfolding and aggregation. Semin Cell Dev Bio, 15: 3–16

23
Dobson C M, Sali A, Karplus M (1998). Protein folding: a perspective from theory and experiment. Angew Chem Int Ed Eng, 37: 868–893

24
Fernandez-Escamilla A M, Rousseau F, Schymkowitz J, Serrano L (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol, 22: 1302–1306

25
Fersht A (1999). Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. New York: WH Freeman

26
Fersht A R (2000). Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism. Proc Natl Acad Sci USA, 97:1525–1529

27
Galzitskaya O V, Garbuzynskiy S O, Lobanov M Y (2006). Is it possible to predict amyloidogenic regions from sequence alone? J Bioinform Comput Biol, 4: 373–388

28
Garten R J, Davis C T, Russell C A, Shu B, Lindstrom S, Balish A, Sessions W M, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith C B, Emery S L, Hillman M J, Rivailler P, Smagala J, de Graaf M, Burke D F, Fouchier R A, Pappas C, Alpuche-Aranda C M, López-Gatell H, Olivera H, López I, Myers C A, Faix D, Blair P J, Yu C, Keene K M, Dotson P D Jr, Boxrud D, Sambol A R, Abid S H, St George K, Bannerman T, Moore A L, Stringer D J, Blevins P, Demmler-Harrison G J, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara H F, Belongia E A, Clark P A, Beatrice S T, Donis R, Katz J, Finelli L, Bridges C B, Shaw M, Jernigan D B, Uyeki T M, Smith D J, Klimov A I, Cox N J (2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science, 325: 197–201

DOI

29
Gething M J, Sambrook J (1992). Protein folding in the cell. Nature, 355: 33–45

DOI

30
Govaerts C, Wille H, Prusiner S B, Cohen F E (2004). Evidence for assembly of prions with left-handed beta-helices into trimers. Proc Natl Acad Sci USA, 101: 8342–8347

DOI

31
Gray J J (2006). High-resolution protein-protein docking. Curr Opin Struct Biol, 16: 183–193

DOI

32
Hardesty B, Kramer G (2001). Folding of a nascent peptide on the ribosome. Prog Nucleic Acid Res Mol Biol, 66:41–66

DOI

33
Hardy J, Cai H, Cookson M R, Gwinn-Hardy K, Singleton A (2006). Genetics of Parkinson's disease and parkinsonism. Ann Neurol, 60: 389–398

DOI

34
Hardy J, Selkoe D J (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297: 353–356

DOI

35
Hartl F U, Hayer-Hartl M (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295: 1852–1858

DOI

36
Hore P J, Winder S L, Roberts C H, Dobson C M (1997). Stopped-flow photo-CIDNP observation of protein folding. J Am Chem Soc, 119: 5049–5050

37
Höppener J W, Nieuwenhuis M G, Vroom T M, Ahrén B, Lips C J (2002). Role of islet amyloid in type 2 diabetes mellitus: consequence or cause? Mol Cell Endocrinol, 197: 205–212

38
Huang Z W, Prusiner S B, Cohen F E (1996). Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des, 1: 13–19

DOI

39
Ivanova M I, Sawaya M R, Gingery M, Attinger A, Eisenberg D (2004). An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci USA, 101: 10584–10589

DOI

40
Karplus M (1997). The Levinthal paradox, yesterday and today. Fold Des, 2: S69–S76

41
Kelly J W (1996). Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol, 6: 11–17

DOI

42
Koo E H, Lansbury P T Jr, Kelly J W (1999). Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA, 96: 9989–9990

DOI

43
Kuwata K, Nishida N, Matsumoto T, Kamatari Y O, Hosokawa-Muto J, Kodama K, Nakamura H K, Kimura K, Kawasaki M, Takakura Y, Shirabe S, Takata J, Kataoka Y, Katamine S (2007). Hot spots in prion protein for pathogenic conversion. Proc Natl Acad Sci USA, 104: 11921–11926

DOI

44
Liu X, Zhao Y P (2009a). A scheme for multiple sequence alignment optimization-- an improvement based on family representative mechanics features. J Theor Biol, 261: 593–597

DOI

45
Liu X, Zhao Y P (2009b). Donut-shaped fingerprint in homologous polypeptide relationships--a topological feature related to pathogenic structural conversion of conformational disease. J Theor Biol, 258: 294–301

DOI

46
Liu X, Zhao Y P (2010a). Generating artificial homologous proteins according to the representative family characteristic in molecular mechanics properties. FEBS Lett, (in press)

DOI

47
Liu X, Zhao Y P (2010b). Simulated pathogenic conformational switch regions matched well with the biochemical findings. J Biomed Inform, (in press)

48
Liu X, Zhao Y P (2010c). Switch region for pathogenic structural change in conformational disease and its prediction. Plos One, 5(1): e8441

DOI

49
López de la Paz M, Goldie K, Zurdo J, Lacroix E, Dobson C M, Hoenger A, Serrano L (2002). De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci USA, 99: 16052–16057

DOI

50
López de la Paz M, Serrano L (2004). Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci USA, 101: 87–92

DOI

51
Makarov D E, Plaxco K W (2003). The topomer search model: a simple, quantitative theory of two-state protein folding kinetics. Protein Sci, 12: 17–26

DOI

52
Mastrangelo I, Ahmed M, Sato T, Liu W, Wang C, Hough P, Smith S O (2006). High-resolution atomic force microscopy of soluble Abeta42 oligomers. J Mol Biol, 358: 106–109

DOI

53
Matouschek A, Kellis J T, Serrano L, Fersht A R (1989). Mapping the transition state and pathway of protein folding by protein engineering. Nature, 342: 122–126

DOI

54
Meiering E M (2008). The threat of instability: neurodegeneration predicted by protein destabilization and aggregation propensity. Plos Biol, 6: e193

DOI

55
Nelson R, Sawaya M R, Balbirnie M, Madsen A Ø, Riekel C, Grothe R, Eisenberg D (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature, 435: 773–778

DOI

56
Ólafsson Í, Grubb A (2000). Hereditary cystatin C amyloid angiopathy. Amyloid, 7: 70–79

DOI

57
Pawar A P, Dubay K F, Zurdo J, Chiti F, Vendruscolo M, Dobson C M (2005). Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol, 350: 379–392

DOI

58
Pepys M B (1995). The Oxford textbook of medicine. 3rd ed. Oxford: Oxford University Press, 1512–1524

59
Polverino de Laureto P, Taddei N, Frare E, Capanni C, Costantini S, Zurdo J, Chiti F, Dobson C M, Fontana A (2003). Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J Mol Biol, 334: 129–141

DOI

60
Prusiner S B (1997). Prion diseases and the BSE crisis. Science, 278: 245–251

DOI

61
Saiki M, Konakahara T, Morii H (2006). Interaction-based evaluation of the propensity for amyloid formation with cross-beta structure. Biochem Biophys Res Commun, 343: 1262–1271

DOI

63
Sánchez de Groot N, Pallarés I, Avilés FX, Vendrell J, Ventura S (2005). Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct Biol, 5: 18

64
Sawaya M R, Sambashivan S, Nelson R, Ivanova M I, Sievers S A, Apostol M I, Thompson MJ, Balbirnie M, Wiltzius J J, McFarlane H T, Madsen A Ø, Riekel C, Eisenberg D (2007). Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature, 447(7143): 453–457

DOI

65
Smirnovas V, Kim J I, Lu X, Atarashi R, Caughey B, Surewicz W K (2009). Distinct structures of Scrapie Prion Protein (PrPSc)-seeded versus spontaneous recombinant prion protein fibrils revealed by hydrogen/deuterium exchange. J Biol Chem, 284(36): 24233–24241

DOI

66
Soto C (2001). Protein misfolding and disease; protein refolding and therapy. FEBS lett, 498: 204–207

DOI

67
Stefani M, Dobson C M (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med, 81: 678–699

DOI

68
Thomas P J, Qu B H, Pedersen P L (1995). Defective protein folding as a basis of human disease. Trends Biochem Sci, 20: 456–459

DOI

69
Walsh D M, Klyubin I, Fadeeva J V, Cullen W K, Anwyl R, Wolfe M S, Rowan M J, Selkoe D J (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416: 535–539

DOI

70
Wei G, Mousseau N, Derreumaux P (2007). Computational simulations of the early steps of pProtein aggregation. Prion, 1: 3–8

DOI

71
Wolynes P G, Onuchic J N, Thirumalai D (1995). Navigating the folding routes. Science, 267: 1619–1623

DOI

72
Vendruscolo M, Paci E, Dobson C M, Karplus M (2001). Three key residues form a critical contact network in a transition state for protein folding. Nature, 409: 641–645

DOI

73
Ventura S, Zurdo J, Narayanan S, Parreño M, Mangues R, Reif B, Chiti F, Giannoni E, Dobson C M, Aviles F X, Serrano L (2004). Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci USA, 101: 7258–7263

DOI

74
Yoon S, Welsh W J (2004). Detecting hidden sequence propensity for amyloid fibril formation. Protein Sci, 13: 2149–2160

DOI

75
Zhang Z, Chen H, Lai L (2007). Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics, 23: 2218–2225

Outlines

/