REVIEW

Analytical strategies for studying stem cell metabolism

  • James M. Arnold 1 ,
  • William T. Choi 2 ,
  • Arun Sreekumar 1 ,
  • Mirjana Maletić-Savatić , 2,3
Expand
  • 1. Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
  • 2. Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
  • 3. Departments of Pediatrics-Neurology and Neuroscience, and Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA

Received date: 15 Jan 2015

Accepted date: 22 Mar 2015

Published date: 06 May 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology.

Cite this article

James M. Arnold , William T. Choi , Arun Sreekumar , Mirjana Maletić-Savatić . Analytical strategies for studying stem cell metabolism[J]. Frontiers in Biology, 2015 , 10(2) : 141 -153 . DOI: 10.1007/s11515-015-1357-z

Acknowledgements

This work was supported by the NLM Training Program in Biomedical Informatics (T15LM007093), Developmental Biology Training Program (T32HD055200), and BCM Medical Scientist Training Program (W.T.C.); Susan Komen Foundation KG110818, NIH U01 CA179674-01, R21-CA185516-01, NSF DMS-1161759, RP120092, and Funds from the Alkek Center for Molecular Discovery (A.S.K.); and the Dana Foundation, McKnight Endowment for Science, and Nancy Chang Award for Excellence (M.M.-S.).
Joseph M. Arnold, William T. Choi, Arun Sreekumar and Mirjana Maletić-Savatić declare no conflicts of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
1
Allen G I, Maletić-Savatić M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27(21): 3029–3035

DOI PMID

2
Allen JE, Saroya BS, Kunkel M, (2014) Apoptotic circulating tumor cells (CTCs) in the peripheral blood of metastatic colorectal cancer patients are associated with liver metastasis but not CTCs. Oncotarget5: 1753–1760

3
Amantonico A, Oh J Y, Sobek J, Heinemann M, Zenobi R (2008). Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angew Chem Int Ed Engl, 47(29): 5382–5385

DOI PMID

4
Antoniewicz M R, Kelleher J K, Stephanopoulos G (2007). Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng, 9(1): 68–86

DOI PMID

5
Blaise B J, Navratil V, Domange C, Shintu L, Dumas M E, Elena-Herrmann B, Emsley L, Toulhoat P (2010). Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy. J Proteome Res, 9(9): 4513–4520

DOI PMID

6
Blaise B J, Shintu L, Elena B, Emsley L, Dumas M E, Toulhoat P (2009). Statistical recoupling prior to significance testing in nuclear magnetic resonance based metabonomics. Anal Chem, 81(15): 6242–6251

DOI PMID

7
Bochner B R, Siri M, Huang R H, Noble S, Lei X H, Clemons P A, Wagner B K (2011). Assay of the multiple energy-producing pathways of mammalian cells. PLoS ONE, 6(3): e18147

DOI PMID

8
Buchsbaum M S, Hazlett E A (1998). Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr Bull, 24(3): 343–364

DOI PMID

9
Castaldi P J, Dahabreh I J, Ioannidis J P (2011). An empirical assessment of validation practices for molecular classifiers. Brief Bioinform, 12(3): 189–202

DOI PMID

10
Castro-Perez J, Roddy T P, Nibbering N M, Shah V, McLaren D G, Previs S, Attygalle A B, Herath K, Chen Z, Wang S P, Mitnaul L, Hubbard B K, Vreeken R J, Johns D G, Hankemeier T (2011). Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J Am Soc Mass Spectrom, 22(9): 1552–1567

DOI PMID

11a
Coen M, Holmes E, Lindon J C, Nicholson J K (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem Res Toxicol, 21(1): 9–27

DOI PMID

11
Craig A, Cloarec O, Holmes E, Nicholson J K, Lindon J C (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem, 78(7): 2262–2267

DOI PMID

12
Dass C (2007) Fundamentals of contemporary mass spectrometry, Hoboken, New Jersey: John Wiley. Sons, Inc.

13
de Graaf A A, Maathuis A, de Waard P, Deutz N E, Dijkema C, de Vos W M, Venema K (2010). Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR. NMR Biomed, 23(1): 2–12

DOI PMID

14
de Graaf R A (2008). In vivo NMR Spectroscopy: Principles and Techniques. New Jersey: John Wiley. Sons, Inc.

15
DeFeo E M, Cheng L L (2010). Characterizing human cancer metabolomics with ex vivo 1H HRMAS MRS. Technol Cancer Res Treat, 9(4): 381–391

DOI PMID

16
Duarte I F, Lamego I, Rocha C, Gil A M (2009). NMR metabonomics for mammalian cell metabolism studies. Bioanalysis, 1(9): 1597–1614

DOI PMID

17
Dunn W B, Bailey N J, Johnson H E (2005). Measuring the metabolome: current analytical technologies. Analyst (Lond), 130(5): 606–625

DOI PMID

18
Dunn W B, Broadhurst D I, Atherton H J, Goodacre R, Griffin J L (2011). Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev, 40(1): 387–426

DOI PMID

19
Fancy S A, Beckonert O, Darbon G, Yabsley W, Walley R, Baker D, Perkins G L, Pullen F S, Rumpel K (2006). Gas chromatography/flame ionisation detection mass spectrometry for the detection of endogenous urine metabolites for metabonomic studies and its use as a complementary tool to nuclear magnetic resonance spectroscopy. Rapid Commun Mass Spectrom, 20(15): 2271–2280

DOI PMID

20
Fiehn O (2002). Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol, 48(1–-2): 155–171

DOI PMID

21
Folick A, Min W, Wang M C (2011). Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy. Curr Opin Genet Dev, 21(5): 585–590

DOI PMID

22
Folmes C D, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271

DOI PMID

23
Gika H G, Theodoridis G A, Plumb R S, Wilson I D (2014). Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal, 87: 12–25

DOI PMID

24
Glazko G V, Emmert-Streib F (2009). Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics, 25(18): 2348–2354

DOI PMID

25
Goodacre R, Vaidyanathan S, Dunn W B, Harrigan G G, Kell D B (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol, 22(5): 245–252

DOI PMID

26
Griffin J L, Bollard M, Nicholson J K, Bhakoo K (2002). Spectral profiles of cultured neuronal and glial cells derived from HRMAS (1)H NMR spectroscopy. NMR Biomed, 15(6): 375–384

DOI PMID

27
Guidoni L, Ricci-Vitiani L, Rosi A, Palma A, Grande S, Luciani A M, Pelacchi F, di Martino S, Colosimo C, Biffoni M, De Maria R, Pallini R, Viti V (2014). 1H NMR detects different metabolic profiles in glioblastoma stem-like cells. NMR Biomed, 27(2): 129–145

DOI PMID

28
Heinemann M, Zenobi R (2011). Single cell metabolomics. Curr Opin Biotechnol, 22(1): 26–31

DOI PMID

29
Ioannidis J P, Khoury M J (2011). Improving validation practices in “omics” research. Science, 334(6060): 1230–1232

DOI PMID

30
Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256

DOI PMID

31
Kanehisa M, Goto S (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28(1): 27–30

DOI PMID

32
Kind T, Fiehn O (2009). What are the obstacles for an integrated system for comprehensive interpretation of cross-platform metabolic profile data? Bioanalysis, 1(9): 1511–1514

DOI PMID

33
Kind T, Wohlgemuth G, Lee Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem, 81(24): 10038–10048

DOI PMID

34
Klerk L A, Dankers P Y, Popa E R, Bosman A W, Sanders M E, Reedquist K A, Heeren R M (2010). TOF-secondary ion mass spectrometry imaging of polymeric scaffolds with surrounding tissue after in vivo implantation. Anal Chem, 82(11): 4337–4343

DOI PMID

35
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230

DOI PMID

36
Kulak A, Duarte J M, Do K Q, Gruetter R (2010). Neurochemical profile of the developing mouse cortex determined by in vivo 1H NMR spectroscopy at 14.1 T and the effect of recurrent anaesthesia. J Neurochem, 115(6): 1466–1477

DOI PMID

37
Liimatainen T J, Erkkilä A T, Valonen P, Vidgren H, Lakso M, Wong G, Gröhn O H, Ylä-Herttuala S, Hakumäki J M (2008). 1H MR spectroscopic imaging of phospholipase-mediated membrane lipid release in apoptotic rat glioma in vivo. Magn Reson Med, 59(6): 1232–1238

DOI PMID

38
Loewenbrück K F, Fuchs B, Hermann A, Brandt M, Werner A, Kirsch M, Schwarz S, Schwarz J, Schiller J, Storch A (2011). Proton MR spectroscopy of neural stem cells: does the proton-NMR peak at 1.28 ppm function as a biomarker for cell type or state? Rejuvenation Res, 14(4): 371–381

DOI PMID

39
Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F (2012). Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng, 109(1): 146–156

DOI PMID

40
Maher A D, Fonville J M, Coen M, Lindon J C, Rae C D, Nicholson J K (2012). Statistical total correlation spectroscopy scaling for enhancement of metabolic information recovery in biological NMR spectra. Anal Chem, 84(2): 1083–1091

DOI PMID

41
Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985

DOI PMID

42
Meissen J K, Yuen B T, Kind T, Riggs J W, Barupal D K, Knoepfler P S, Fiehn O (2012). Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism. PLoS ONE, 7(10): e46770

DOI PMID

43
Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, D’Eustachio P, Stein L (2012). Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel), 4(4): 1180–1211

DOI PMID

44
Mountford C E, Stanwell P, Lin A, Ramadan S, Ross B (2010). Neurospectroscopy: the past, present and future. Chem Rev, 110(5): 3060–3086

DOI PMID

45
Mushtaq M Y, Choi Y H, Verpoorte R, Wilson E G (2014). Extraction for metabolomics: access to the metabolome. Phytochem Anal, 25(4): 291–306

DOI PMID

46
Nevedomskaya E, Ramautar R, Derks R, Westbroek I, Zondag G, van der Pluijm I, Deelder A M, Mayboroda O A (2010). CE-MS for metabolic profiling of volume-limited urine samples: application to accelerated aging TTD mice. J Proteome Res, 9(9): 4869–4874

DOI PMID

47
Nicholson J K, Holmes E, Kinross J M, Darzi A W, Takats Z, Lindon J C (2012). Metabolic phenotyping in clinical and surgical environments. Nature, 491(7424): 384–392

DOI PMID

48
Nishida K, Ono K, Kanaya S, Takahashi K (2014). KEGGscape: a Cytoscape app for pathway data integration. F1000Res, 3: 144

PMID

49
Nishimura D (2000) Biotech software & Internet report. Larchmont, NY: Mary Ann Liebert, Inc.

50
Panopoulos A D, Yanes O, Ruiz S, Kida Y S, Diep D, Tautenhahn R, Herrerías A, Batchelder E M, Plongthongkum N, Lutz M, Berggren W T, Zhang K, Evans R M, Siuzdak G, Izpisua Belmonte J C (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res, 22(1): 168–177

DOI PMID

51
Peterson C, Vannucci M, Karakas C, Choi W, Ma L, Maletić-Savatić M (2013). Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors. Stat Interface, 6(4): 547–558

DOI PMID

52
Putluri N, Shojaie A, Vasu V T, Vareed S K, Nalluri S, Putluri V, Thangjam G S, Panzitt K, Tallman C T, Butler C, Sana T R, Fischer S M, Sica G, Brat D J, Shi H, Palapattu G S, Lotan Y, Weizer A Z, Terris M K, Shariat S F, Michailidis G, Sreekumar A (2011). Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Res, 71(24): 7376–7386

DOI PMID

53
Quinn K P, Sridharan G V, Hayden R S, Kaplan D L, Lee K, Georgakoudi I (2013). Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep, 3: 3432

54
Ramm P, Bettscheider M, Beier D, Kalbitzer H R, Kremer W, Bogdahn U, Hau P, Aigner L, Beier C P (2011). 1H-nuclear magnetic resonance spectroscopy of glioblastoma cancer stem cells. Stem Cells Dev, 20(12): 2189–2195

DOI PMID

55
Ramm Sander P, Hau P, Koch S, Schütze K, Bogdahn U, Kalbitzer H R, Aigner L (2013). Stem cell metabolic and spectroscopic profiling. Trends Biotechnol, 31(3): 204–213

DOI PMID

56
Rando T A (2006). Stem cells, ageing and the quest for immortality. Nature, 441(7097): 1080–1086

DOI PMID

57a
Robinette S L, Veselkov K A, Bohus E, Coen M, Keun H C, Ebbels T M, Beckonert O, Holmes E C, Lindon J C, Nicholson J K (2009). Cluster analysis statistical spectroscopy using nuclear magnetic resonance generated metabolic data sets from perturbed biological systems. Anal Chem, 81(16): 6581–6589

DOI PMID

57
Sana T R, Waddell K, Fischer S M (2008). A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. J Chromatogr B Analyt Technol Biomed Life Sci, 871(2): 314–321

DOI PMID

58
Sands C J, Coen M, Ebbels T M, Holmes E, Lindon J C, Nicholson J K (2011). Data-driven approach for metabolite relationship recovery in biological 1H NMR data sets using iterative statistical total correlation spectroscopy. Anal Chem, 83(6): 2075–2082

DOI PMID

59
Sepúlveda D E, Andrews B A, Papoutsakis E T, Asenjo J A (2010). Metabolic flux analysis of embryonic stem cells using three distinct differentiation protocols and comparison to gene expression patterns. Biotechnol Prog, 26(5): 1222–1229

DOI PMID

60
Ser Z, Liu X, Tang N N, Locasale J W (2015). Extraction parameters for metabolomics from cultured cells. Anal Biochem, 475: 22–28

DOI PMID

61
Shah S H, Kraus W E, Newgard C B (2012). Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation, 126(9): 1110–1120

DOI PMID

62
Sierra A, Encinas J M, Deudero J J, Chancey J H, Enikolopov G, Overstreet-Wadiche L S, Tsirka S E, Maletic-Savatic M (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4): 483–495

DOI PMID

63
Smith L M, Maher A D, Cloarec O, Rantalainen M, Tang H, Elliott P, Stamler J, Lindon J C, Holmes E, Nicholson J K (2007). Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples. Anal Chem, 79(15): 5682–5689

DOI PMID

64
Soares D P, Law M (2009). Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol, 64(1): 12–21

DOI PMID

65
Sowell R A, Koeniger S L, Valentine S J, Moon M H, Clemmer D E (2004). Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. J Am Soc Mass Spectrom, 15(9): 1341–1353

DOI PMID

66
Sreekumar A, Poisson L M, Rajendiran T M, Khan A P, Cao Q, Yu J, Laxman B, Mehra R, Lonigro R J, Li Y, Nyati M K, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn G S, Ghosh D, Pennathur S, Alexander D C, Berger A, Shuster J R, Wei J T, Varambally S, Beecher C, Chinnaiyan A M (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231): 910–914

DOI PMID

67
Stringari C, Wang H, Geyfman M, Crosignani V, Kumar V, Takahashi J S, Andersen B, Gratton E (2015). In vivo single-cell detection of metabolic oscillations in stem cells. Cell Rep, 10: 1–7

68
Takeuchi K, Ohishi M, Ota S, Suzumura K, Naraoka H, Ohata T, Seki J, Miyamae Y, Honma M, Soga T (2013). Metabolic profiling to identify potential serum biomarkers for gastric ulceration induced by nonsteroid anti-inflammatory drugs. J Proteome Res, 12(3): 1399–1407

DOI PMID

69
Turner W S, Seagle C, Galanko J A, Favorov O, Prestwich G D, Macdonald J M, Reid L M (2008). Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells, 26(6): 1547–1555

DOI PMID

70
Ulrich E L, Akutsu H, Doreleijers J F, Harano Y, Ioannidis Y E, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte C F, Tolmie D E, Kent Wenger R, Yao H, Markley J L (2008). BioMagResBank. Nucleic Acids Res, 36(Database issue): D402–D408

PMID

71
Urban M, Enot D P, Dallmann G, Körner L, Forcher V, Enoh P, Koal T, Keller M, Deigner H P (2010). Complexity and pitfalls of mass spectrometry-based targeted metabolomics in brain research. Anal Biochem, 406(2): 124–131

DOI PMID

72
Urenjak J, Williams S R, Gadian D G, Noble M (1993). Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci, 13(3): 981–989

PMID

73
Vacanti N M, Metallo C M (2013). Exploring metabolic pathways that contribute to the stem cell phenotype. Biochim Biophys Acta, 1830(2): 2361–2369

DOI PMID

74
Vandersypen L M, Steffen M, Breyta G, Yannoni C S, Sherwood M H, Chuang I L (2001). Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414(6866): 883–887

DOI PMID

75
Vingara L K, Yu H J, Wagshul M E, Serafin D, Christodoulou C, Pelczer I, Krupp L B, Maletić-Savatić M (2013). Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage, 82: 586–594

DOI PMID

76
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight S L (2009). Dependence of mouse embryonic stem cells on threonine catabolism. Science, 325(5939): 435–439

DOI PMID

77
Warburg O (1956). On the origin of cancer cells. Science, 123(3191): 309–314

DOI PMID

78
Weckwerth W, Morgenthal K (2005). Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today, 10(22): 1551–1558

DOI PMID

79
Wishart D S, Tzur D, Knox C, Eisner R, Guo A C, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly M A, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau D D, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan G E, Macinnis G D, Weljie A M, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes B D, Vogel H J, Querengesser L (2007). HMDB: the Human Metabolome Database. Nucleic Acids Res, 35(Database issue): D521–D526

DOI PMID

80
Wu H, Southam A D, Hines A, Viant M R (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem, 372(2): 204–212

DOI PMID

81
Yanes O, Clark J, Wong D M, Patti G J, Sánchez-Ruiz A, Benton H P, Trauger S A, Desponts C, Ding S, Siuzdak G (2010). Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol, 6(6): 411–417

DOI PMID

82
Yu Y, Ramachandran P V, Wang M C (2014). Shedding new light on lipid functions with CARS and SRS microscopy. Biochim Biophys Acta, 1841(8): 1120–1129

DOI PMID

83
Zamboni N, Fendt S M, Rühl M, Sauer U (2009). (13)C-based metabolic flux analysis. Nat Protoc, 4(6): 878–892

DOI PMID

84
Zenobi R (2013). Single-cell metabolomics: analytical and biological perspectives. Science, 342(6163): 1243259

DOI PMID

85
Zhang X, Li M, Agrawal A, San K Y (2011). Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng, 13(6): 713–722

DOI PMID

86
Zinnel N F, Pai P J and Russell D H. (2012) Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: increased dynamic range affords increased sequence coverage. Anal Chem, 84: 3390–3397

Outlines

/