Received date: 15 Jan 2015
Accepted date: 22 Mar 2015
Published date: 06 May 2015
Copyright
Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology.
Key words: stem cell; metabolism; NMR; mass spectrometry; MRS; flux analysis
James M. Arnold , William T. Choi , Arun Sreekumar , Mirjana Maletić-Savatić . Analytical strategies for studying stem cell metabolism[J]. Frontiers in Biology, 2015 , 10(2) : 141 -153 . DOI: 10.1007/s11515-015-1357-z
1 |
Allen G I, Maletić-Savatić M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27(21): 3029–3035
|
2 |
Allen JE, Saroya BS, Kunkel M,
|
3 |
Amantonico A, Oh J Y, Sobek J, Heinemann M, Zenobi R (2008). Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angew Chem Int Ed Engl, 47(29): 5382–5385
|
4 |
Antoniewicz M R, Kelleher J K, Stephanopoulos G (2007). Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng, 9(1): 68–86
|
5 |
Blaise B J, Navratil V, Domange C, Shintu L, Dumas M E, Elena-Herrmann B, Emsley L, Toulhoat P (2010). Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy. J Proteome Res, 9(9): 4513–4520
|
6 |
Blaise B J, Shintu L, Elena B, Emsley L, Dumas M E, Toulhoat P (2009). Statistical recoupling prior to significance testing in nuclear magnetic resonance based metabonomics. Anal Chem, 81(15): 6242–6251
|
7 |
Bochner B R, Siri M, Huang R H, Noble S, Lei X H, Clemons P A, Wagner B K (2011). Assay of the multiple energy-producing pathways of mammalian cells. PLoS ONE, 6(3): e18147
|
8 |
Buchsbaum M S, Hazlett E A (1998). Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr Bull, 24(3): 343–364
|
9 |
Castaldi P J, Dahabreh I J, Ioannidis J P (2011). An empirical assessment of validation practices for molecular classifiers. Brief Bioinform, 12(3): 189–202
|
10 |
Castro-Perez J, Roddy T P, Nibbering N M, Shah V, McLaren D G, Previs S, Attygalle A B, Herath K, Chen Z, Wang S P, Mitnaul L, Hubbard B K, Vreeken R J, Johns D G, Hankemeier T (2011). Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J Am Soc Mass Spectrom, 22(9): 1552–1567
|
11a |
Coen M, Holmes E, Lindon J C, Nicholson J K (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem Res Toxicol, 21(1): 9–27
|
11 |
Craig A, Cloarec O, Holmes E, Nicholson J K, Lindon J C (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem, 78(7): 2262–2267
|
12 |
Dass C (2007) Fundamentals of contemporary mass spectrometry, Hoboken, New Jersey: John Wiley. Sons, Inc.
|
13 |
de Graaf A A, Maathuis A, de Waard P, Deutz N E, Dijkema C, de Vos W M, Venema K (2010). Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR. NMR Biomed, 23(1): 2–12
|
14 |
de Graaf R A (2008). In vivo NMR Spectroscopy: Principles and Techniques. New Jersey: John Wiley. Sons, Inc.
|
15 |
DeFeo E M, Cheng L L (2010). Characterizing human cancer metabolomics with ex vivo 1H HRMAS MRS. Technol Cancer Res Treat, 9(4): 381–391
|
16 |
Duarte I F, Lamego I, Rocha C, Gil A M (2009). NMR metabonomics for mammalian cell metabolism studies. Bioanalysis, 1(9): 1597–1614
|
17 |
Dunn W B, Bailey N J, Johnson H E (2005). Measuring the metabolome: current analytical technologies. Analyst (Lond), 130(5): 606–625
|
18 |
Dunn W B, Broadhurst D I, Atherton H J, Goodacre R, Griffin J L (2011). Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev, 40(1): 387–426
|
19 |
Fancy S A, Beckonert O, Darbon G, Yabsley W, Walley R, Baker D, Perkins G L, Pullen F S, Rumpel K (2006). Gas chromatography/flame ionisation detection mass spectrometry for the detection of endogenous urine metabolites for metabonomic studies and its use as a complementary tool to nuclear magnetic resonance spectroscopy. Rapid Commun Mass Spectrom, 20(15): 2271–2280
|
20 |
Fiehn O (2002). Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol, 48(1–-2): 155–171
|
21 |
Folick A, Min W, Wang M C (2011). Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy. Curr Opin Genet Dev, 21(5): 585–590
|
22 |
Folmes C D, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271
|
23 |
Gika H G, Theodoridis G A, Plumb R S, Wilson I D (2014). Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal, 87: 12–25
|
24 |
Glazko G V, Emmert-Streib F (2009). Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics, 25(18): 2348–2354
|
25 |
Goodacre R, Vaidyanathan S, Dunn W B, Harrigan G G, Kell D B (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol, 22(5): 245–252
|
26 |
Griffin J L, Bollard M, Nicholson J K, Bhakoo K (2002). Spectral profiles of cultured neuronal and glial cells derived from HRMAS (1)H NMR spectroscopy. NMR Biomed, 15(6): 375–384
|
27 |
Guidoni L, Ricci-Vitiani L, Rosi A, Palma A, Grande S, Luciani A M, Pelacchi F, di Martino S, Colosimo C, Biffoni M, De Maria R, Pallini R, Viti V (2014). 1H NMR detects different metabolic profiles in glioblastoma stem-like cells. NMR Biomed, 27(2): 129–145
|
28 |
Heinemann M, Zenobi R (2011). Single cell metabolomics. Curr Opin Biotechnol, 22(1): 26–31
|
29 |
Ioannidis J P, Khoury M J (2011). Improving validation practices in “omics” research. Science, 334(6060): 1230–1232
|
30 |
Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256
|
31 |
Kanehisa M, Goto S (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28(1): 27–30
|
32 |
Kind T, Fiehn O (2009). What are the obstacles for an integrated system for comprehensive interpretation of cross-platform metabolic profile data? Bioanalysis, 1(9): 1511–1514
|
33 |
Kind T, Wohlgemuth G, Lee Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem, 81(24): 10038–10048
|
34 |
Klerk L A, Dankers P Y, Popa E R, Bosman A W, Sanders M E, Reedquist K A, Heeren R M (2010). TOF-secondary ion mass spectrometry imaging of polymeric scaffolds with surrounding tissue after in vivo implantation. Anal Chem, 82(11): 4337–4343
|
35 |
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
|
36 |
Kulak A, Duarte J M, Do K Q, Gruetter R (2010). Neurochemical profile of the developing mouse cortex determined by in vivo 1H NMR spectroscopy at 14.1 T and the effect of recurrent anaesthesia. J Neurochem, 115(6): 1466–1477
|
37 |
Liimatainen T J, Erkkilä A T, Valonen P, Vidgren H, Lakso M, Wong G, Gröhn O H, Ylä-Herttuala S, Hakumäki J M (2008). 1H MR spectroscopic imaging of phospholipase-mediated membrane lipid release in apoptotic rat glioma in vivo. Magn Reson Med, 59(6): 1232–1238
|
38 |
Loewenbrück K F, Fuchs B, Hermann A, Brandt M, Werner A, Kirsch M, Schwarz S, Schwarz J, Schiller J, Storch A (2011). Proton MR spectroscopy of neural stem cells: does the proton-NMR peak at 1.28 ppm function as a biomarker for cell type or state? Rejuvenation Res, 14(4): 371–381
|
39 |
Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F (2012). Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng, 109(1): 146–156
|
40 |
Maher A D, Fonville J M, Coen M, Lindon J C, Rae C D, Nicholson J K (2012). Statistical total correlation spectroscopy scaling for enhancement of metabolic information recovery in biological NMR spectra. Anal Chem, 84(2): 1083–1091
|
41 |
Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985
|
42 |
Meissen J K, Yuen B T, Kind T, Riggs J W, Barupal D K, Knoepfler P S, Fiehn O (2012). Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism. PLoS ONE, 7(10): e46770
|
43 |
Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, D’Eustachio P, Stein L (2012). Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel), 4(4): 1180–1211
|
44 |
Mountford C E, Stanwell P, Lin A, Ramadan S, Ross B (2010). Neurospectroscopy: the past, present and future. Chem Rev, 110(5): 3060–3086
|
45 |
Mushtaq M Y, Choi Y H, Verpoorte R, Wilson E G (2014). Extraction for metabolomics: access to the metabolome. Phytochem Anal, 25(4): 291–306
|
46 |
Nevedomskaya E, Ramautar R, Derks R, Westbroek I, Zondag G, van der Pluijm I, Deelder A M, Mayboroda O A (2010). CE-MS for metabolic profiling of volume-limited urine samples: application to accelerated aging TTD mice. J Proteome Res, 9(9): 4869–4874
|
47 |
Nicholson J K, Holmes E, Kinross J M, Darzi A W, Takats Z, Lindon J C (2012). Metabolic phenotyping in clinical and surgical environments. Nature, 491(7424): 384–392
|
48 |
Nishida K, Ono K, Kanaya S, Takahashi K (2014). KEGGscape: a Cytoscape app for pathway data integration. F1000Res, 3: 144
|
49 |
Nishimura D (2000) Biotech software & Internet report. Larchmont, NY: Mary Ann Liebert, Inc.
|
50 |
Panopoulos A D, Yanes O, Ruiz S, Kida Y S, Diep D, Tautenhahn R, Herrerías A, Batchelder E M, Plongthongkum N, Lutz M, Berggren W T, Zhang K, Evans R M, Siuzdak G, Izpisua Belmonte J C (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res, 22(1): 168–177
|
51 |
Peterson C, Vannucci M, Karakas C, Choi W, Ma L, Maletić-Savatić M (2013). Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors. Stat Interface, 6(4): 547–558
|
52 |
Putluri N, Shojaie A, Vasu V T, Vareed S K, Nalluri S, Putluri V, Thangjam G S, Panzitt K, Tallman C T, Butler C, Sana T R, Fischer S M, Sica G, Brat D J, Shi H, Palapattu G S, Lotan Y, Weizer A Z, Terris M K, Shariat S F, Michailidis G, Sreekumar A (2011). Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Res, 71(24): 7376–7386
|
53 |
Quinn K P, Sridharan G V, Hayden R S, Kaplan D L, Lee K, Georgakoudi I (2013). Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep, 3: 3432
|
54 |
Ramm P, Bettscheider M, Beier D, Kalbitzer H R, Kremer W, Bogdahn U, Hau P, Aigner L, Beier C P (2011). 1H-nuclear magnetic resonance spectroscopy of glioblastoma cancer stem cells. Stem Cells Dev, 20(12): 2189–2195
|
55 |
Ramm Sander P, Hau P, Koch S, Schütze K, Bogdahn U, Kalbitzer H R, Aigner L (2013). Stem cell metabolic and spectroscopic profiling. Trends Biotechnol, 31(3): 204–213
|
56 |
Rando T A (2006). Stem cells, ageing and the quest for immortality. Nature, 441(7097): 1080–1086
|
57a |
Robinette S L, Veselkov K A, Bohus E, Coen M, Keun H C, Ebbels T M, Beckonert O, Holmes E C, Lindon J C, Nicholson J K (2009). Cluster analysis statistical spectroscopy using nuclear magnetic resonance generated metabolic data sets from perturbed biological systems. Anal Chem, 81(16): 6581–6589
|
57 |
Sana T R, Waddell K, Fischer S M (2008). A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. J Chromatogr B Analyt Technol Biomed Life Sci, 871(2): 314–321
|
58 |
Sands C J, Coen M, Ebbels T M, Holmes E, Lindon J C, Nicholson J K (2011). Data-driven approach for metabolite relationship recovery in biological 1H NMR data sets using iterative statistical total correlation spectroscopy. Anal Chem, 83(6): 2075–2082
|
59 |
Sepúlveda D E, Andrews B A, Papoutsakis E T, Asenjo J A (2010). Metabolic flux analysis of embryonic stem cells using three distinct differentiation protocols and comparison to gene expression patterns. Biotechnol Prog, 26(5): 1222–1229
|
60 |
Ser Z, Liu X, Tang N N, Locasale J W (2015). Extraction parameters for metabolomics from cultured cells. Anal Biochem, 475: 22–28
|
61 |
Shah S H, Kraus W E, Newgard C B (2012). Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation, 126(9): 1110–1120
|
62 |
Sierra A, Encinas J M, Deudero J J, Chancey J H, Enikolopov G, Overstreet-Wadiche L S, Tsirka S E, Maletic-Savatic M (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4): 483–495
|
63 |
Smith L M, Maher A D, Cloarec O, Rantalainen M, Tang H, Elliott P, Stamler J, Lindon J C, Holmes E, Nicholson J K (2007). Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples. Anal Chem, 79(15): 5682–5689
|
64 |
Soares D P, Law M (2009). Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol, 64(1): 12–21
|
65 |
Sowell R A, Koeniger S L, Valentine S J, Moon M H, Clemmer D E (2004). Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. J Am Soc Mass Spectrom, 15(9): 1341–1353
|
66 |
Sreekumar A, Poisson L M, Rajendiran T M, Khan A P, Cao Q, Yu J, Laxman B, Mehra R, Lonigro R J, Li Y, Nyati M K, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn G S, Ghosh D, Pennathur S, Alexander D C, Berger A, Shuster J R, Wei J T, Varambally S, Beecher C, Chinnaiyan A M (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231): 910–914
|
67 |
Stringari C, Wang H, Geyfman M, Crosignani V, Kumar V, Takahashi J S, Andersen B, Gratton E (2015). In vivo single-cell detection of metabolic oscillations in stem cells. Cell Rep, 10: 1–7
|
68 |
Takeuchi K, Ohishi M, Ota S, Suzumura K, Naraoka H, Ohata T, Seki J, Miyamae Y, Honma M, Soga T (2013). Metabolic profiling to identify potential serum biomarkers for gastric ulceration induced by nonsteroid anti-inflammatory drugs. J Proteome Res, 12(3): 1399–1407
|
69 |
Turner W S, Seagle C, Galanko J A, Favorov O, Prestwich G D, Macdonald J M, Reid L M (2008). Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells, 26(6): 1547–1555
|
70 |
Ulrich E L, Akutsu H, Doreleijers J F, Harano Y, Ioannidis Y E, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte C F, Tolmie D E, Kent Wenger R, Yao H, Markley J L (2008). BioMagResBank. Nucleic Acids Res, 36(Database issue): D402–D408
|
71 |
Urban M, Enot D P, Dallmann G, Körner L, Forcher V, Enoh P, Koal T, Keller M, Deigner H P (2010). Complexity and pitfalls of mass spectrometry-based targeted metabolomics in brain research. Anal Biochem, 406(2): 124–131
|
72 |
Urenjak J, Williams S R, Gadian D G, Noble M (1993). Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci, 13(3): 981–989
|
73 |
Vacanti N M, Metallo C M (2013). Exploring metabolic pathways that contribute to the stem cell phenotype. Biochim Biophys Acta, 1830(2): 2361–2369
|
74 |
Vandersypen L M, Steffen M, Breyta G, Yannoni C S, Sherwood M H, Chuang I L (2001). Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414(6866): 883–887
|
75 |
Vingara L K, Yu H J, Wagshul M E, Serafin D, Christodoulou C, Pelczer I, Krupp L B, Maletić-Savatić M (2013). Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage, 82: 586–594
|
76 |
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight S L (2009). Dependence of mouse embryonic stem cells on threonine catabolism. Science, 325(5939): 435–439
|
77 |
Warburg O (1956). On the origin of cancer cells. Science, 123(3191): 309–314
|
78 |
Weckwerth W, Morgenthal K (2005). Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today, 10(22): 1551–1558
|
79 |
Wishart D S, Tzur D, Knox C, Eisner R, Guo A C, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly M A, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau D D, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan G E, Macinnis G D, Weljie A M, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes B D, Vogel H J, Querengesser L (2007). HMDB: the Human Metabolome Database. Nucleic Acids Res, 35(Database issue): D521–D526
|
80 |
Wu H, Southam A D, Hines A, Viant M R (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem, 372(2): 204–212
|
81 |
Yanes O, Clark J, Wong D M, Patti G J, Sánchez-Ruiz A, Benton H P, Trauger S A, Desponts C, Ding S, Siuzdak G (2010). Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol, 6(6): 411–417
|
82 |
Yu Y, Ramachandran P V, Wang M C (2014). Shedding new light on lipid functions with CARS and SRS microscopy. Biochim Biophys Acta, 1841(8): 1120–1129
|
83 |
Zamboni N, Fendt S M, Rühl M, Sauer U (2009). (13)C-based metabolic flux analysis. Nat Protoc, 4(6): 878–892
|
84 |
Zenobi R (2013). Single-cell metabolomics: analytical and biological perspectives. Science, 342(6163): 1243259
|
85 |
Zhang X, Li M, Agrawal A, San K Y (2011). Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng, 13(6): 713–722
|
86 |
Zinnel N F, Pai P J and Russell D H. (2012) Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: increased dynamic range affords increased sequence coverage. Anal Chem, 84: 3390–3397
|
/
〈 | 〉 |