Received date: 21 Nov 2014
Accepted date: 10 Feb 2015
Published date: 06 May 2015
Copyright
Neural stem cells generate new neurons throughout life in distinct regions of the mammalian brain. This process, called adult neurogenesis, is important for tissue homeostasis and physiological brain function. In addition, failing or altered neurogenesis has been associated with a number of diseases such as major depression and epilepsy. Thus, understanding the molecular mechanisms governing the neurogenic process in the adult brain may enable future therapeutic approaches to target neural stem/progenitor cells (NSPCs) and their progeny to ameliorate disease symptoms and/or disease progression. Recently, the control of cellular metabolism has emerged as a regulator of NSPC activity in the adult brain. Here we review recent findings that attempt to describe stage-specific modulations of metabolism to ensure proper neurogenesis and suggest future avenues of research aiming to understand how metabolism affects NSPC behavior.
Key words: adult neurogenesis; metabolic switch; quiescence; proliferation; differentiation
Marlen Knobloch , Sebastian Jessberger . Metabolic control of adult neural stem cell behavior[J]. Frontiers in Biology, 2015 , 10(2) : 100 -106 . DOI: 10.1007/s11515-015-1349-z
1 |
Ables J L, Decarolis N A, Johnson M A, Rivera P D, Gao Z, Cooper D C, Radtke F, Hsieh J, Eisch A J (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci, 30(31): 10484–10492
|
2 |
Altman J, Das G D (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature, 204(4964): 1161–1163
|
3 |
Ben Abdallah N M B, Slomianka L, Vyssotski A L, Lipp H P (2010). Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging, 31(1): 151–161
|
4 |
Bergmann O, Liebl J, Bernard S, Alkass K, Yeung M S Y, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding K L, Frisén J (2012). The age of olfactory bulb neurons in humans. Neuron, 74(4): 634–639
|
5 |
Boitard C, Etchamendy N, Sauvant J, Aubert A, Tronel S, Marighetto A, Layé S, Ferreira G (2012). Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus, 22(11): 2095–2100
|
6 |
Bonaguidi M A, Song J, Ming G L, Song H (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol, 22(5): 754–761
|
7 |
Braun S M G, Jessberger S (2014). Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol, 40(1): 3–12
|
8 |
Candelario K M, Shuttleworth C W, Cunningham L A (2013). Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem, 125(3): 420–429
|
9 |
Chorna N E, Santos-Soto I J, Carballeira N M, Morales J L, de la Nuez J, Cátala-Valentin A, Chornyy A P, Vázquez-Montes A, De Ortiz S P (2013). Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation. PLoS ONE, 8(11): e77845
|
10 |
Christian K M, Song H, Ming G L (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci, 37(1): 243–262
|
11 |
Costa M R, Ortega F, Brill M S, Beckervordersandforth R, Petrone C, Schroeder T, Götz M, Berninger B (2011). Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development, 138(6): 1057–1068
|
12 |
Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339–350
|
13 |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
|
14 |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624
|
15 |
Eijkelenboom A, Burgering B M T (2013). FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol, 14(2): 83–97
|
16 |
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
|
17 |
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
|
18 |
Favaro R, Valotta M, Ferri A L M, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248–1256
|
19 |
Folmes C D L, Dzeja P P, Nelson T J, Terzic A (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11(5): 596–606
|
20 |
Folmes C D L, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271
|
21 |
Fukata Y, Fukata M (2010). Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci, 11(3): 161–75
|
22 |
Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang Y A, Chin L, Depinho R A (2010). Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature, 468(7324): 701–704
|
23 |
Ge S, Goh E L K, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
|
24 |
Gurumurthy S, Xie S Z, Alagesan B, Kim J, Yusuf R Z, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park P J, Shirihai O S, Scadden D T, Bardeesy N (2010). The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature, 468(7324): 659–663
|
25 |
Homem C C F, Steinmann V, Burkard T R, Jais A, Esterbauer H, Knoblich J A (2014). Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell, 158(4): 874–888
|
26 |
Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan D E, Schafer Z T, Evans R M, Suda T, Lee C H, Pandolfi P P (2012). A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med, 18(9): 1350–1358
|
27 |
Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256
|
28 |
Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M (2009). Progress in lipid research. Prog Lipid Res, 48: 117–127
|
29 |
Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620
|
30 |
Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241
|
31 |
Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064
|
32 |
Knobloch M, Von Schoultz C, Zurkirchen L, Braun S M G, Vidmar M, Jessberger S (2014) Spot14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators. Stem Cell Rep, 3: 1–8
|
33 |
Knobloch M, Braun S M G, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
|
34 |
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer R P, Horvat V, Volk B, Kempermann G (2010). Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE, 5(1): e8809
|
35 |
Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683
|
36 |
Kuhn H G, Dickinson-Anson H, Gage F H (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6): 2027–2033
|
37 |
Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702
|
38 |
Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621
|
39 |
Lee J, Duan W, Long J M, Ingram D K, Mattson M P (2000). Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci, 15(2): 99–108
|
40 |
Lee J, Seroogy K B, Mattson M P (2002). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem, 80(3): 539–547
|
41 |
Li J, Tang Y, Cai D (2012). IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol, 14(10): 999–1012
|
42 |
Lie D C, Colamarino S A, Song H J, Désiré L, Mira H, Consiglio A, Lein E S, Jessberger S, Lansford H, Dearie A R, Gage F H (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437(7063): 1370–1375
|
43 |
Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, Erlanson-Albertsson C (2006). High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol, 13(12): 1385–1388
|
44 |
Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456
|
45 |
Ma D K, Kim W R, Ming G L, Song H (2009). Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci, 1170(1): 664–673
|
46 |
Menendez J A, Lupu R (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer, 7(10): 763–777
|
47 |
Mira H, Andreu Z, Suh H, Lie D C, Jessberger S, Consiglio A, San Emeterio J, Hortigüela R, Marqués-Torrejón M Á, Nakashima K, Colak D, Götz M, Fariñas I, Gage F H (2010). Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell, 7(1): 78–89
|
48 |
Morton G J, Cummings D E, Baskin D G, Barsh G S, Schwartz M W (2006). Central nervous system control of food intake and body weight. Nature, 443(7109): 289–295
|
49 |
Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini S S, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Püttmann L, Vahid L N, Jensen C, Moheb L A, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi S G, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi M J, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss A W, Tzschach A, Kahrizi K, Ropers H H (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367): 57–63
|
50 |
Nakada D, Saunders T L, Morrison S J (2010). Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature, 468(7324): 653–658
|
51 |
Orford K W, Scadden D T (2008). Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet, 9(2): 115–128
|
52 |
Paik J H, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun W S, Chae S S, Zheng H, Ying H, Mahoney J, Hiller D, Jiang S, Protopopov A, Wong W H, Chin L, Ligon K L, DePinho R A (2009). FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell, 5(5): 540–553
|
53 |
Park H R, Park M, Choi J, Park K Y, Chung H Y, Lee J (2010). Neuroscience Letters. Neurosci Lett, 482: 235–239
|
54 |
Renault V M, Rafalski V A, Morgan A A, Salih D A M, Brett J O, Webb A E, Villeda S A, Thekkat P U, Guillerey C, Denko N C, Palmer T D, Butte A J, Brunet A (2009). FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell, 5(5): 527–539
|
55 |
Schulz T J, Huang P, Huang T L, Xue R, McDougall L E, Townsend K L, Cypess A M, Mishina Y, Gussoni E, Tseng Y H (2013). Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature, 495(7441): 379–383
|
56 |
Schulz T J, Tseng Y H (2009). Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev, 20(5–6): 523–531
|
57 |
Sims J K, Manteiga S, Lee K (2013). Towards high resolution analysis of metabolic flux in cells and tissues. Curr Opin Biotechnol, 24(5): 933–939
|
58 |
Song J, Zhong C, Bonaguidi M A, Sun G J, Hsu D, Gu Y, Meletis K, Huang Z J, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian K M, Ming G L, Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414): 150–154
|
59 |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
|
60 |
Steib K, Schäffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633
|
61 |
Stein L R, Imai S (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J, 33(12): 1321–1340
|
62 |
Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601
|
63 |
Suda T, Takubo K, Semenza G L (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9(4): 298–310
|
64 |
Suh H, Deng W, Gage F H (2009). Signaling in adult neurogenesis. Annu Rev Cell Dev Biol, 25(1): 253–275
|
65 |
Teperino R, Amann S, Bayer M, McGee S L, Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G, Dalgaard K, Selvaraj M, Gaster M, Lee-Young R S, Febbraio M A, Knauf C, Cani P D, Aberger F, Penninger J M, Pospisilik J A, Esterbauer H (2012). Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell, 151(2): 414–426
|
66 |
Teperino R, Schoonjans K, Auwerx J (2010). Perspective. Cell Metab, 12: 321–327
|
67 |
Vander Heiden M G, Cantley L C, Thompson C B (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930): 1029–1033
|
68 |
Varum S, Rodrigues A S, Moura M B, Momcilovic O, Easley C A 4th, Ramalho-Santos J, Van Houten B, Schatten G (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE, 6(6): e20914
|
69 |
Villeda S A, Luo J, Mosher K I, Zou B, Britschgi M, Bieri G, Stan T M, Fainberg N, Ding Z, Eggel A, Lucin K M, Czirr E, Park J S, Couillard-Després S, Aigner L, Li G, Peskind E R, Kaye J A, Quinn J F, Galasko D R, Xie X S, Rando T A, Wyss-Coray T (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362): 90–94
|
70 |
Zhang J, Nuebel E, Daley G Q, Koehler C M, Teitell M A (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11(5): 589–595
|
71 |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
|
/
〈 | 〉 |