MINI-REVIEW

Metabolic control of adult neural stem cell behavior

  • Marlen Knobloch ,
  • Sebastian Jessberger
Expand
  • Brain Research Institute, Faculty of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland

Received date: 21 Nov 2014

Accepted date: 10 Feb 2015

Published date: 06 May 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Neural stem cells generate new neurons throughout life in distinct regions of the mammalian brain. This process, called adult neurogenesis, is important for tissue homeostasis and physiological brain function. In addition, failing or altered neurogenesis has been associated with a number of diseases such as major depression and epilepsy. Thus, understanding the molecular mechanisms governing the neurogenic process in the adult brain may enable future therapeutic approaches to target neural stem/progenitor cells (NSPCs) and their progeny to ameliorate disease symptoms and/or disease progression. Recently, the control of cellular metabolism has emerged as a regulator of NSPC activity in the adult brain. Here we review recent findings that attempt to describe stage-specific modulations of metabolism to ensure proper neurogenesis and suggest future avenues of research aiming to understand how metabolism affects NSPC behavior.

Cite this article

Marlen Knobloch , Sebastian Jessberger . Metabolic control of adult neural stem cell behavior[J]. Frontiers in Biology, 2015 , 10(2) : 100 -106 . DOI: 10.1007/s11515-015-1349-z

1
Ables J L, Decarolis N A, Johnson M A, Rivera P D, Gao Z, Cooper D C, Radtke F, Hsieh J, Eisch A J (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci, 30(31): 10484–10492

DOI PMID

2
Altman J, Das G D (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature, 204(4964): 1161–1163

DOI PMID

3
Ben Abdallah N M B, Slomianka L, Vyssotski A L, Lipp H P (2010). Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging, 31(1): 151–161

DOI PMID

4
Bergmann O, Liebl J, Bernard S, Alkass K, Yeung M S Y, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding K L, Frisén J (2012). The age of olfactory bulb neurons in humans. Neuron, 74(4): 634–639

DOI PMID

5
Boitard C, Etchamendy N, Sauvant J, Aubert A, Tronel S, Marighetto A, Layé S, Ferreira G (2012). Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus, 22(11): 2095–2100

DOI PMID

6
Bonaguidi M A, Song J, Ming G L, Song H (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol, 22(5): 754–761

DOI PMID

7
Braun S M G, Jessberger S (2014). Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol, 40(1): 3–12

DOI PMID

8
Candelario K M, Shuttleworth C W, Cunningham L A (2013). Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem, 125(3): 420–429

DOI PMID

9
Chorna N E, Santos-Soto I J, Carballeira N M, Morales J L, de la Nuez J, Cátala-Valentin A, Chornyy A P, Vázquez-Montes A, De Ortiz S P (2013). Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation. PLoS ONE, 8(11): e77845

DOI PMID

10
Christian K M, Song H, Ming G L (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci, 37(1): 243–262

DOI PMID

11
Costa M R, Ortega F, Brill M S, Beckervordersandforth R, Petrone C, Schroeder T, Götz M, Berninger B (2011). Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development, 138(6): 1057–1068

DOI PMID

12
Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339–350

13
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061

PMID

14
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624

DOI PMID

15
Eijkelenboom A, Burgering B M T (2013). FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol, 14(2): 83–97

DOI PMID

16
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579

DOI PMID

17
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317

DOI PMID

18
Favaro R, Valotta M, Ferri A L M, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248–1256

DOI PMID

19
Folmes C D L, Dzeja P P, Nelson T J, Terzic A (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11(5): 596–606

DOI PMID

20
Folmes C D L, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271

DOI PMID

21
Fukata Y, Fukata M (2010). Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci, 11(3): 161–75

22
Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang Y A, Chin L, Depinho R A (2010). Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature, 468(7324): 701–704

DOI PMID

23
Ge S, Goh E L K, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593

DOI PMID

24
Gurumurthy S, Xie S Z, Alagesan B, Kim J, Yusuf R Z, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park P J, Shirihai O S, Scadden D T, Bardeesy N (2010). The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature, 468(7324): 659–663

DOI PMID

25
Homem C C F, Steinmann V, Burkard T R, Jais A, Esterbauer H, Knoblich J A (2014). Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell, 158(4): 874–888

DOI PMID

26
Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan D E, Schafer Z T, Evans R M, Suda T, Lee C H, Pandolfi P P (2012). A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med, 18(9): 1350–1358

DOI PMID

27
Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256

DOI PMID

28
Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M (2009). Progress in lipid research. Prog Lipid Res, 48: 117–127

DOI PMID

29
Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620

DOI PMID

30
Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241

DOI PMID

31
Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064

DOI PMID

32
Knobloch M, Von Schoultz C, Zurkirchen L, Braun S M G, Vidmar M, Jessberger S (2014) Spot14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators. Stem Cell Rep, 3: 1–8

33
Knobloch M, Braun S M G, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230

DOI PMID

34
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer R P, Horvat V, Volk B, Kempermann G (2010). Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE, 5(1): e8809

DOI PMID

35
Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683

DOI PMID

36
Kuhn H G, Dickinson-Anson H, Gage F H (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6): 2027–2033

PMID

37
Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702

DOI PMID

38
Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621

DOI PMID

39
Lee J, Duan W, Long J M, Ingram D K, Mattson M P (2000). Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci, 15(2): 99–108

DOI PMID

40
Lee J, Seroogy K B, Mattson M P (2002). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem, 80(3): 539–547

DOI PMID

41
Li J, Tang Y, Cai D (2012). IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol, 14(10): 999–1012

DOI PMID

42
Lie D C, Colamarino S A, Song H J, Désiré L, Mira H, Consiglio A, Lein E S, Jessberger S, Lansford H, Dearie A R, Gage F H (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437(7063): 1370–1375

DOI PMID

43
Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, Erlanson-Albertsson C (2006). High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol, 13(12): 1385–1388

DOI PMID

44
Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456

DOI PMID

45
Ma D K, Kim W R, Ming G L, Song H (2009). Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci, 1170(1): 664–673

DOI PMID

46
Menendez J A, Lupu R (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer, 7(10): 763–777

DOI PMID

47
Mira H, Andreu Z, Suh H, Lie D C, Jessberger S, Consiglio A, San Emeterio J, Hortigüela R, Marqués-Torrejón M Á, Nakashima K, Colak D, Götz M, Fariñas I, Gage F H (2010). Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell, 7(1): 78–89

DOI PMID

48
Morton G J, Cummings D E, Baskin D G, Barsh G S, Schwartz M W (2006). Central nervous system control of food intake and body weight. Nature, 443(7109): 289–295

DOI PMID

49
Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini S S, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Püttmann L, Vahid L N, Jensen C, Moheb L A, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi S G, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi M J, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss A W, Tzschach A, Kahrizi K, Ropers H H (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367): 57–63

DOI PMID

50
Nakada D, Saunders T L, Morrison S J (2010). Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature, 468(7324): 653–658

DOI PMID

51
Orford K W, Scadden D T (2008). Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet, 9(2): 115–128

DOI PMID

52
Paik J H, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun W S, Chae S S, Zheng H, Ying H, Mahoney J, Hiller D, Jiang S, Protopopov A, Wong W H, Chin L, Ligon K L, DePinho R A (2009). FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell, 5(5): 540–553

DOI PMID

53
Park H R, Park M, Choi J, Park K Y, Chung H Y, Lee J (2010). Neuroscience Letters. Neurosci Lett, 482: 235–239

DOI PMID

54
Renault V M, Rafalski V A, Morgan A A, Salih D A M, Brett J O, Webb A E, Villeda S A, Thekkat P U, Guillerey C, Denko N C, Palmer T D, Butte A J, Brunet A (2009). FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell, 5(5): 527–539

DOI PMID

55
Schulz T J, Huang P, Huang T L, Xue R, McDougall L E, Townsend K L, Cypess A M, Mishina Y, Gussoni E, Tseng Y H (2013). Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature, 495(7441): 379–383

DOI PMID

56
Schulz T J, Tseng Y H (2009). Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev, 20(5–6): 523–531

DOI PMID

57
Sims J K, Manteiga S, Lee K (2013). Towards high resolution analysis of metabolic flux in cells and tissues. Curr Opin Biotechnol, 24(5): 933–939

DOI PMID

58
Song J, Zhong C, Bonaguidi M A, Sun G J, Hsu D, Gu Y, Meletis K, Huang Z J, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian K M, Ming G L, Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414): 150–154

DOI PMID

59
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227

DOI PMID

60
Steib K, Schäffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633

DOI PMID

61
Stein L R, Imai S (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J, 33(12): 1321–1340

PMID

62
Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601

DOI PMID

63
Suda T, Takubo K, Semenza G L (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9(4): 298–310

DOI PMID

64
Suh H, Deng W, Gage F H (2009). Signaling in adult neurogenesis. Annu Rev Cell Dev Biol, 25(1): 253–275

DOI PMID

65
Teperino R, Amann S, Bayer M, McGee S L, Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G, Dalgaard K, Selvaraj M, Gaster M, Lee-Young R S, Febbraio M A, Knauf C, Cani P D, Aberger F, Penninger J M, Pospisilik J A, Esterbauer H (2012). Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell, 151(2): 414–426

DOI PMID

66
Teperino R, Schoonjans K, Auwerx J (2010). Perspective. Cell Metab, 12: 321–327

DOI PMID

67
Vander Heiden M G, Cantley L C, Thompson C B (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930): 1029–1033

DOI PMID

68
Varum S, Rodrigues A S, Moura M B, Momcilovic O, Easley C A 4th, Ramalho-Santos J, Van Houten B, Schatten G (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE, 6(6): e20914

DOI PMID

69
Villeda S A, Luo J, Mosher K I, Zou B, Britschgi M, Bieri G, Stan T M, Fainberg N, Ding Z, Eggel A, Lucin K M, Czirr E, Park J S, Couillard-Després S, Aigner L, Li G, Peskind E R, Kaye J A, Quinn J F, Galasko D R, Xie X S, Rando T A, Wyss-Coray T (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362): 90–94

DOI PMID

70
Zhang J, Nuebel E, Daley G Q, Koehler C M, Teitell M A (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11(5): 589–595

DOI PMID

71
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660

DOI PMID

Outlines

/