RESEARCH ARTICLE

Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter

  • Meng WANG 1 ,
  • Kasturi BANERJEE 1 ,
  • Harriet BAKER 1,2 ,
  • John W. CAVE , 1,2
Expand
  • 1. Burke Medical Research Institute, White Plains, NY 10605, USA
  • 2. Weill Cornell Medical College Brain and Mind Research Institute, NY 10065, USA

Received date: 15 Jul 2014

Accepted date: 22 Oct 2014

Published date: 14 Feb 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis and its gene proximal promoter (<1 kb upstream from the transcription start site) is essential for regulating transcription in both the developing and adult nervous systems. Several putative regulatory elements within the TH proximal promoter have been reported, but evolutionary conservation of these elements has not been thoroughly investigated. Since many vertebrate species are used to model development, function and disorders of human catecholaminergic neurons, identifying evolutionarily conserved transcription regulatory mechanisms is a high priority. In this study, we align TH proximal promoter nucleotide sequences from several vertebrate species to identify evolutionarily conserved motifs. This analysis identified three elements (a TATA box, cyclic AMP response element (CRE) and a 5′-GGTGG-3′ site) that constitute the core of an ancient vertebrate TH promoter. Focusing on only eutherian mammals, two regions of high conservation within the proximal promoter were identified: a ~250 bp region adjacent to the transcription start site and a ~85 bp region located approximately 350 bp further upstream. Within both regions, conservation of previously reported cis-regulatory motifs and human single nucleotide variants was evaluated. Transcription reporter assays in a TH -expressing cell line demonstrated the functionality of highly conserved motifs in the proximal promoter regions and electromobility shift assays showed that brain-region specific complexes assemble on these motifs. These studies also identified a non-canonical CRE binding (CREB) protein recognition element in the proximal promoter. Together, these studies provide a detailed analysis of evolutionary conservation within the TH promoter and identify potential cis-regulatory motifs that underlie a core set of regulatory mechanisms in mammals.

Cite this article

Meng WANG , Kasturi BANERJEE , Harriet BAKER , John W. CAVE . Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter[J]. Frontiers in Biology, 2015 , 10(1) : 74 -90 . DOI: 10.1007/s11515-014-1341-z

Acknowledgements

We thank Nana Fujiwara and Michael Mazzola for their assistance in preparation of figures and Dr. Jennifer K. Nyborg (Colorado State University) for providing purified CREB protein. This work was supported by NIH grant R01 DC008955 and the Burke Medical Research Institute.
All authors declare that they have no conflicts of interest. Mice were housed in humidity-controlled cages at 22°C under a 12:12 h light/dark cycle and provided with food and water ad libitum. All procedures were carried out under protocols approved by the Weill Cornell Medical College Institutional Animal Care and Use Committee and conformed to NIH guidelines.
1
Akiba N, Jo S, Akiba Y, Baker H, Cave J W (2009). Expression of EGR-1 in a subset of olfactory bulb dopaminergic cells. J Mol Histol, 40(2): 151–155

DOI PMID

2
Baker H, Kawano T, Margolis F L, Joh T H (1983). Transneuronal regulation of tyrosine hydroxylase expression in olfactory bulb of mouse and rat. J Neurosci, 3(1): 69–78

PMID

3
Baker H, Liu N, Chun H S, Saino S, Berlin R, Volpe B, Son J H (2001). Phenotypic differentiation during migration of dopaminergic progenitor cells to the olfactory bulb. J Neurosci, 21(21): 8505–8513

PMID

4
Baker H, Morel K, Stone D M, Maruniak J A (1993). Adult naris closure profoundly reduces tyrosine hydroxylase expression in mouse olfactory bulb. Brain Res, 614(1–2): 109–116

DOI PMID

5
Barrett T J, Vedeckis W V (1996). Occupancy and composition of proteins bound to the AP-1 sites in the glucocorticoid receptor and c-jun promoters after glucocorticoid treatment and in different cell types. Recept Signal Transduct, 6(3–4): 179–193

PMID

6
Best J A, Chen Y, Piech K M, Tank A W (1995). The response of the tyrosine hydroxylase gene to cyclic AMP is mediated by two cyclic AMP-response elements. J Neurochem, 65(5): 1934–1943

DOI PMID

7
Brooks T A, Hurley L H (2009). The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer, 9(12): 849–861

DOI PMID

8
Brudno M, Do C B, Cooper G M, Kim M F, Davydov E, Green E D, Sidow A, Batzoglou S, and the NISC Comparative Sequencing Program (2003). LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res, 13(4): 721–731

DOI PMID

9
Burbach J P, Smits S, Smidt M P (2003). Transcription factors in the development of midbrain dopamine neurons. Ann N Y Acad Sci, 991(1): 61–68

DOI PMID

10
Byrd C A (2000). Deafferentation-induced changes in the olfactory bulb of adult zebrafish. Brain Res, 866(1-2): 92–100

DOI PMID

11
Cambi F, Fung B, Chikaraishi D (1989). 5′ flanking DNA sequences direct cell-specific expression of rat tyrosine hydroxylase. J Neurochem, 53(5): 1656–1659

DOI PMID

12
Cave J W, Akiba Y, Banerjee K, Bhosle S, Berlin R, Baker H (2010). Differential regulation of dopaminergic gene expression by Er81. J Neurosci, 30(13): 4717–4724

DOI PMID

13
Cave J W, Baker H (2009). Dopamine systems in the forebrain. Adv Exp Med Biol, 651: 15–35

DOI PMID

14
Cazorla P, Smidt M P, O’Malley K L, Burbach J P (2000). A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J Neurochem, 74(5): 1829–1837

DOI PMID

15
Chen Y C, Priyadarshini M, Panula P (2009). Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafish. Histochem Cell Biol, 132(4): 375–381

DOI PMID

16
Dawson S J, Yoon S O, Chikaraishi D M, Lillycrop K A, Latchman D S (1994). The Oct-2 transcription factor represses tyrosine hydroxylase expression via a heptamer TAATGARAT-like motif in the gene promoter. Nucleic Acids Res, 22(6): 1023–1028

DOI PMID

17
Dickson P W, Briggs G D (2013). Tyrosine hydroxylase: regulation by feedback inhibition and phosphorylation. Adv Pharmacol, 68: 13–21

DOI PMID

18
Filippi A, Mahler J, Schweitzer J, Driever W (2010). Expression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. J Comp Neurol, 518(4): 423–438

DOI PMID

19
Frazer K A, Pachter L, Poliakov A, Rubin E M, Dubchak I (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res, 32(Web Server issue): W273-9

PMID

20
Goridis C, Rohrer H (2002). Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci, 3(7): 531–541

DOI PMID

21
Hack M A, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo P M, Götz M (2005). Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci, 8(7): 865–872

DOI PMID

22
Hebert M A, Serova L I, Sabban E L (2005). Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogen-activated protein kinases in the rat locus coeruleus. J Neurochem, 95(2): 484–498

DOI PMID

23
Hwang D Y, Ardayfio P, Kang U J, Semina E V, Kim K S (2003). Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res, 114(2): 123–131

DOI PMID

24
Ichikawa H, Mo Z, Xiang M, Sugimoto T (2005). Brn-3a deficiency increases tyrosine hydroxylase-immunoreactive neurons in the dorsal root ganglion. Brain Res, 1036(1–2): 192–195

DOI PMID

25
Iwawaki T, Kohno K, Kobayashi K (2000). Identification of a potential nurr1 response element that activates the tyrosine hydroxylase gene promoter in cultured cells. Biochem Biophys Res Commun, 274(3): 590–595

DOI PMID

26
Jacobs F M, van Erp S, van der Linden A J, von Oerthel L, Burbach J P, Smidt M P (2009). Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development, 136(4): 531–540

DOI PMID

27
Kessler M A, Yang M, Gollomp K L, Jin H, Iacovitti L (2003). The human tyrosine hydroxylase gene promoter. Brain Res Mol Brain Res, 112(1–2): 8–23

DOI PMID

28
Kim K S, Kim C H, Hwang D Y, Seo H, Chung S, Hong S J, Lim J K, Anderson T, Isacson O (2003a). Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem, 85(3): 622–634

DOI PMID

29
Kim S M, Yang J W, Park M J, Lee J K, Kim S U, Lee Y S, Lee M A (2006). Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor. Biochem Biophys Res Commun, 346(2): 426–435

DOI PMID

30
Kim T E, Park M J, Choi E J, Lee H S, Lee S H, Yoon S H, Oh C K, Lee B J, Kim S U, Lee Y S, Lee M A (2003b). Cloning and cell type-specific regulation of the human tyrosine hydroxylase gene promoter. Biochem Biophys Res Commun, 312(4): 1123–1131

DOI PMID

31
Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988). Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types. J Biochem, 103(6): 907–912

PMID

32
Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Hata T, Watanabe Y, Fujita K, Nagatsu T (1995). Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice. J Biol Chem, 270(45): 27235–27243

DOI PMID

33
Kobayashi K, Noda Y, Matsushita N, Nishii K, Sawada H, Nagatsu T, Nakahara D, Fukabori R, Yasoshima Y, Yamamoto T, Miura M, Kano M, Mamiya T, Miyamoto Y, Nabeshima T (2000). Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene. J Neurosci, 20(6): 2418–2426

PMID

34
Kohwi M, Osumi N, Rubenstein J L, Alvarez-Buylla A (2005). Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci, 25(30): 6997–7003

DOI PMID

35
Lenartowski R, Goc A (2011). Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene. Int J Dev Neurosci, 29(8): 873–883

DOI PMID

36
Lewis-Tuffin L J, Quinn P G, Chikaraishi D M (2004). Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol Cell Neurosci, 25(3): 536–547

DOI PMID

37
Liu J, Merlie J P, Todd R D, O’Malley K L (1997). Identification of cell type-specific promoter elements associated with the rat tyrosine hydroxylase gene using transgenic founder analysis. Brain Res Mol Brain Res, 50(1–2): 33–42

DOI PMID

38
Liu N, Cigola E, Tinti C, Jin B K, Conti B, Volpe B T, Baker H (1999). Unique regulation of immediate early gene and tyrosine hydroxylase expression in the odor-deprived mouse olfactory bulb. J Biol Chem, 274(5): 3042–3047

DOI PMID

39
Lo L, Morin X, Brunet J F, Anderson D J (1999). Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron, 22(4): 693–705

DOI PMID

40
Min N, Joh T H, Kim K S, Peng C, Son J H (1994). 5′ upstream DNA sequence of the rat tyrosine hydroxylase gene directs high-level and tissue-specific expression to catecholaminergic neurons in the central nervous system of transgenic mice. Brain Res Mol Brain Res, 27(2): 281–289

DOI PMID

41
Moll J R, Acharya A, Gal J, Mir A A, Vinson C (2002). Magnesium is required for specific DNA binding of the CREB B-ZIP domain. Nucleic Acids Res, 30(5): 1240–1246

DOI PMID

42
Nagamoto-Combs K, Piech K M, Best J A, Sun B, Tank A W (1997). Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic amp-responsive element binding protein-independent regulation. J Biol Chem, 272(9): 6051–6058

DOI PMID

43
Nakashima A, Ota A, Sabban E L (2003). Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription. Brain Res Mol Brain Res, 112(1–2): 61–69

DOI PMID

44
Nunes I, Tovmasian L T, Silva R M, Burke R E, Goff S P (2003). Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA, 100(7): 4245–4250

DOI PMID

45
Papanikolaou N A, Sabban E L (1999). Sp1/Egr1 motif: a new candidate in the regulation of rat tyrosine hydroxylase gene transcription by immobilization stress. J Neurochem, 73(1): 433–436

DOI PMID

46
Papanikolaou N A, Sabban E L (2000). Ability of Egr1 to activate tyrosine hydroxylase transcription in PC12 cells. Cross-talk with AP-1 factors. J Biol Chem, 275(35): 26683–26689

PMID

47
Paskin T R, Iqbal T R, Byrd-Jacobs C A (2011). Olfactory bulb recovery following reversible deafferentation with repeated detergent application in the adult zebrafish. Neuroscience, 196: 276–284

DOI PMID

48
Patankar S, Lazaroff M, Yoon S O, Chikaraishi D M (1997). A novel basal promoter element is required for expression of the rat tyrosine hydroxylase gene. J Neurosci, 17(11): 4076–4086

PMID

49
Patel P, Nankova B B, LaGamma E F (2005). Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element. Brain Res Dev Brain Res, 160(1): 53–62

DOI PMID

50
Qin Y, Hurley L H (2008). Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie, 90(8): 1149–1171

DOI PMID

51
Rao F, Zhang L, Wessel J, Zhang K, Wen G, Kennedy B P, Rana B K, Das M, Rodriguez-Flores J L, Smith D W, Cadman P E, Salem R M, Mahata S K, Schork N J, Taupenot L, Ziegler M G, O’Connor D T (2007). Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis: discovery of common human genetic variants governing transcription, autonomic activity, and blood pressure in vivo. Circulation, 116(9): 993–1006

DOI PMID

52
Sabban E L (1997). Control of tyrosine hydroxylase gene expression in chromaffin and PC12 cells. Semin Cell Dev Biol, 8(2): 101–111

DOI PMID

53
Saucedo-Cardenas O, Quintana-Hau J D, Le W D, Smidt M P, Cox J J, De Mayo F, Burbach J P, Conneely O M (1998). Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA, 95(7): 4013–4018

DOI PMID

54
Schimmel J J, Crews L, Roffler-Tarlov S, Chikaraishi D M (1999). 4.5 kb of the rat tyrosine hydroxylase 5′ flanking sequence directs tissue specific expression during development and contains consensus sites for multiple transcription factors. Brain Res Mol Brain Res, 74(1–2): 1–14

DOI PMID

55
Smeets W J, González A (2000). Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Res Brain Res Rev, 33(2–3): 308–379

DOI PMID

56
Smidt M P, Smits S M, Bouwmeester H, Hamers F P, van der Linden A J, Hellemons A J, Graw J, Burbach J P (2004). Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development, 131(5): 1145–1155

DOI PMID

57
Son J H, Chun H S, Joh T H, Cho S, Conti B, Lee J W (1999). Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci, 19(1): 10–20

PMID

58
Stefano L, Al Sarraj J, Rössler O G, Vinson C, Thiel G (2006). Up-regulation of tyrosine hydroxylase gene transcription by tetradecanoylphorbol acetate is mediated by the transcription factors Ets-like protein-1 (Elk-1) and Egr-1. J Neurochem, 97(1): 92–104

DOI PMID

59
Suzuki T, Yamakuni T, Hagiwara M, Ichinose H (2002). Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene. J Biol Chem, 277(43): 40768–40774

DOI PMID

60
Tan X, Zhang L, Zhu H, Qin J, Tian M, Dong C, Li H, Jin G (2014). Brn4 and TH synergistically promote the differentiation of neural stem cells into dopaminergic neurons. Neurosci Lett, 571: 23–28

DOI PMID

61
Trocmé C, Sarkis C, Hermel J M, Duchateau R, Harrison S, Simonneau M, Al-Shawi R, Mallet J (1998). CRE and TRE sequences of the rat tyrosine hydroxylase promoter are required for TH basal expression in adult mice but not in the embryo. Eur J Neurosci, 10(2): 508–521

DOI PMID

62
Venters B J, Pugh B F (2013). Genomic organization of human transcription initiation complexes. Nature, 502(7469): 53–58

PMID

63
Verbeek M M, Steenbergen-Spanjers G C, Willemsen M A, Hol F A, Smeitink J, Seeger J, Grattan-Smith P, Ryan M M, Hoffmann G F, Donati M A, Blau N, Wevers R A (2007). Mutations in the cyclic adenosine monophosphate response element of the tyrosine hydroxylase gene. Ann Neurol, 62(4): 422–426

DOI PMID

64
Willemsen M A, Verbeek M M, Kamsteeg E J, de Rijk-van Andel J F, Aeby A, Blau N, Burlina A, Donati M A, Geurtz B, Grattan-Smith P J, Haeussler M, Hoffmann G F, Jung H, de Klerk J B, van der Knaap M S, Kok F, Leuzzi V, de Lonlay P, Megarbane A, Monaghan H, Renier W O, Rondot P, Ryan M M, Seeger J, Smeitink J A, Steenbergen-Spanjers G C, Wassmer E, Weschke B, Wijburg F A, Wilcken B, Zafeiriou D I, Wevers R A (2010). Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain, 133(Pt 6): 1810–1822

DOI PMID

65
Yamamoto K, Ruuskanen J O, Wullimann M F, Vernier P (2010). Two tyrosine hydroxylase genes in vertebrates new dopaminergic territories revealed in the zebrafish brain. Mol Cell Neurosci, 43(4): 394–402

DOI PMID

66
Yamamoto K, Vernier P (2011). The evolution of dopamine systems in chordates. Front Neuroanat, 5: 21

DOI PMID

67
Yamanoue Y, Miya M, Inoue J G, Matsuura K, Nishida M (2006). The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes Genet Syst, 81(1): 29–39

DOI PMID

68
Yang C, Kim H S, Seo H, Kim K S (1998). Identification and characterization of potential cis-regulatory elements governing transcriptional activation of the rat tyrosine hydroxylase gene. J Neurochem, 71(4): 1358–1368

DOI PMID

69
Yoon S O, Chikaraishi D M (1992). Tissue-specific transcription of the rat tyrosine hydroxylase gene requires synergy between an AP-1 motif and an overlapping E box-containing dyad. Neuron, 9(1): 55–67

DOI PMID

70
Yukimasa N, Isobe K, Nagai H, Takuwa Y, Nakai T (1999). Successive occupancy by immediate early transcriptional factors of the tyrosine hydroxylase gene TRE and CRE sites in PACAP-stimulated PC12 pheochromocytoma cells. Neuropeptides, 33(6): 475–482

DOI PMID

71
Zetterström R H, Solomin L, Jansson L, Hoffer B J, Olson L, Perlmann T (1997). Dopamine neuron agenesis in Nurr1-deficient mice. Science, 276(5310): 248–250

DOI PMID

72
Zhou Q Y, Quaife C J, Palmiter R D (1995). Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature, 374(6523): 640–643

DOI PMID

Outlines

/